Suppr超能文献

利用机器学习技术预测新辅助化疗后局部晚期胃癌患者根治性胃切除术的预后:一项中国多中心研究

Predicting the prognosis of radical gastrectomy for patients with locally advanced gastric cancer after neoadjuvant chemotherapy using machine learning technology: a multicenter study in China.

作者信息

Huang Ze-Ning, He Qi-Chen, Sun Yu-Qin, Ma Yu-Bin, Qiu Wen-Wu, He Ji-Xun, Zheng Chao-Hui, Li Ping, Wang Jia-Bin, Chen Qi-Yue, Cao Long-Long, Lin Mi, Tu Ru-Hong, Huang Chang-Ming, Lin Jian-Xian, Xie Jian-Wei

机构信息

Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian, China.

Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.

出版信息

Surg Endosc. 2025 Jul 9. doi: 10.1007/s00464-025-11946-4.

Abstract

BACKGROUND

Neoadjuvant chemotherapy (NAC) can improve the prognosis of patients with locally advanced gastric cancer (LAGC). However, precise models for accurate prognostic predictions are lacking. We aimed to utilize Cox regression and integrate various machine learning (ML) algorithms to identify and prioritize key factors influencing LAGC overall survival to establish an efficient prognostic prediction model.

METHODS

Data from 385 patients with LAGC who underwent NAC followed by radical gastrectomy at two centers between January 2016 and December 2020 were analyzed (internal training set, n = 167; internal validation set, n = 112; external validation set, n = 106). The internal cohort was randomly divided into training and validation sets in a 6:4 ratio.

RESULTS

The support vector machine (SVM) model was identified as the best predictive model (AUC values: internal training set, 0.93; internal validation set, 0.74; external validation set, 0.74), outperforming the ypTNM staging system (AUC values: internal training set, 0.9330 vs. 0.7170; internal validation set, 0.7440 vs. 0.6700; external validation set, 0.7403 vs. 0.6960, respectively). In the internal cohort, patients in the HRG (High Risk Group) had significantly lower mean overall survival compared with patients in the LRG (Low Risk Group) (47.33 vs. 64.97 months, respectively; log-rank P = 0.006) and a higher recurrence rate (48.0% vs. 35.6%, respectively; P = 0.041).

CONCLUSIONS

The SVM model predicted postoperative survival and recurrence patterns in patients with LAGC post-NAC, and can address the limitations of the ypTNM staging system through providing more targeted decision-making for individualized treatment.

摘要

背景

新辅助化疗(NAC)可改善局部晚期胃癌(LAGC)患者的预后。然而,目前缺乏用于准确预后预测的精确模型。我们旨在利用Cox回归并整合各种机器学习(ML)算法,以识别并优先确定影响LAGC总生存期的关键因素,从而建立一个有效的预后预测模型。

方法

分析了2016年1月至2020年12月期间在两个中心接受NAC后行根治性胃切除术的385例LAGC患者的数据(内部训练集,n = 167;内部验证集,n = 112;外部验证集,n = 106)。内部队列以6:4的比例随机分为训练集和验证集。

结果

支持向量机(SVM)模型被确定为最佳预测模型(AUC值:内部训练集为0.93;内部验证集为0.74;外部验证集为0.74),优于ypTNM分期系统(AUC值:内部训练集分别为0.9330对0.7170;内部验证集为0.7440对0.6700;外部验证集为0.7403对0.6960)。在内部队列中,高危组(HRG)患者的平均总生存期显著低于低危组(LRG)患者(分别为47.33个月和64.97个月;对数秩检验P = 0.006),且复发率更高(分别为48.0%和35.6%;P = 0.041)。

结论

SVM模型可预测NAC后LAGC患者的术后生存和复发模式,并可通过为个体化治疗提供更具针对性的决策来解决ypTNM分期系统的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验