Suppr超能文献

利用人工智能对缺血性卒中非增强CT上的高密度动脉征进行分割

Segmentation of the Hyperdense Artery Sign on Noncontrast CT in Ischemic Stroke Using Artificial Intelligence.

作者信息

Kim Pyeong Eun, Ha Sue Young, Lee Myungjae, Kim Nakhoon, Ryu Wi-Sun, Sunwoo Leonard, Kim Beom Joon

机构信息

Artificial Intelligence Research Center, JLK Inc., Seoul, Korea.

Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.

出版信息

J Clin Neurol. 2025 Jul;21(4):305-314. doi: 10.3988/jcn.2024.0560.

Abstract

BACKGROUND AND PURPOSE

We developed and validated an automated hyperdense artery sign (HAS) segmentation algorithm for the distal internal carotid artery and middle cerebral artery on noncontrast brain computed tomography (NCCT) using a multicenter dataset with independent annotation performed by two experts.

METHODS

For training and external validation, we included patients with ischemic stroke who underwent concurrent NCCT and CT angiography between May 2011 and December 2022 at six hospitals and one hospital, respectively. For clinical validation, nonoverlapping patients admitted within 24 hours of onset were consecutively included between December 2020 and April 2023 from six hospitals. The model was trained using the 2D U-Net deep-learning architecture with manual annotation by two experts. We constructed models trained on datasets annotated individually by each expert, and an ensemble model using shuffled annotations by both experts. The performance of the models was compared using the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity.

RESULTS

This study included 673, 365, and 774 patients in the training/internal validation, external validation, and clinical validation datasets, respectively, who were aged 68.8±13.2, 67.8±13.4, and 68.8±13.6 years (mean±standard deviation) and comprised 55.0%, 59.5%, and 57.6% males. The ensemble model achieved higher AUROC and sensitivity than the models trained on annotations by a single expert in the external validation. For the clinical validation dataset, the ensemble model exhibited an AUROC of 0.846 (95% confidence interval [CI], 0.819-0.871), sensitivity of 76.8% (95% CI, 65.1%-86.1%), and specificity of 88.5% (95% CI, 85.9%-90.8%). The predicted volume of the clot was correlated with the infarct volume in follow-up diffusion-weighted imaging (=0.42, <0.001).

CONCLUSIONS

Our new algorithm can rapidly and accurately identify the HAS, and so can facilitate the screening of potential patients requiring intervention.

摘要

背景与目的

我们开发并验证了一种用于非增强脑计算机断层扫描(NCCT)上颈内动脉远端和大脑中动脉的自动高密度动脉征(HAS)分割算法,该算法使用了一个多中心数据集,且有两位专家进行独立标注。

方法

为了进行训练和外部验证,我们分别纳入了2011年5月至2022年12月期间在六家医院和一家医院同时接受NCCT和CT血管造影的缺血性中风患者。为了进行临床验证,连续纳入了2020年12月至2023年4月期间来自六家医院、发病24小时内入院的非重叠患者。该模型使用二维U-Net深度学习架构,并由两位专家进行手动标注进行训练。我们构建了在每位专家单独标注的数据集上训练的模型,以及一个使用两位专家随机标注的集成模型。使用受试者操作特征曲线下面积(AUROC)、敏感性和特异性来比较模型的性能。

结果

本研究在训练/内部验证、外部验证和临床验证数据集中分别纳入了673例、365例和774例患者,他们的年龄分别为68.8±13.2岁、67.8±13.4岁和68.8±13.6岁(均值±标准差),男性分别占55.0%、59.5%和57.6%。在外部验证中,集成模型比在单一专家标注上训练的模型具有更高的AUROC和敏感性。对于临床验证数据集,集成模型的AUROC为0.846(95%置信区间[CI],0.819 - 0.871),敏感性为76.8%(95%CI,65.1% - 86.1%),特异性为88.5%(95%CI,85.9% - 90.8%)。在后续的扩散加权成像中,预测的血栓体积与梗死体积相关(=0.42,<0.001)。

结论

我们的新算法能够快速、准确地识别HAS,从而有助于筛查需要干预的潜在患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74be/12303688/988dcba2eff0/jcn-21-305-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验