Ramirez-Fernandez Odin, Duran-Gonzalez Iliana, Equihua-Guillen Fabian, Avila Laura Castruita, Camporredondo Emilio, Garcia-Lara Adrian, Zuñiga-Aguilar Esmeralda
Departamento de Ingenieria Biomedica, Universidad Politécnica de Cuautitlán Izcalli, 54720, CDMX, México.
Departamento de Investigación, Universidad Tecnológica de México-UNITEC México-Campus en Línea, Col. 9 Anáhuac, Ciudad de México, 11320, CDMX, México.
Technol Health Care. 2025 Jul 10:9287329251346282. doi: 10.1177/09287329251346282.
BackgroundThe increasing demand for dental implants necessitates the exploration of advanced materials and manufacturing techniques. Three-dimensional (3D) printing has emerged as a viable method for producing custom dental implants, allowing for intricate designs and improved patient-specific fits. This study focuses on the design and structural deformation assessment of 3D-printed dental implants using Finite Element Analysis (FEA). By simulating the mechanical behavior of these implants under realistic loading conditions, we aim to evaluate their performance and predict potential failure points, ultimately enhancing their reliability and longevity in clinical applications.ObjectiveThe primary objective of this study is to conduct a comprehensive design and structural deformation assessment of three-dimensional (3D) printed dental implants using Finite Element Analysis (FEA). Specifically, the study aims to: Evaluate stress distribution and deformation patterns in three 3D-printed dental implant designs under simulated physiological loading.Compare the stiffness, strength, and elastic behavior of PEEK and CFR-PEEK under occlusal forces.Identify failure points in implants and bone-implant interfaces by analyzing high stress concentrations.Predict the biomechanical behavior of a novel dental implant by determining its elastic modulus through finite element analysis (FEA).MethodsThree models 3D were designed to understand stress distribution with different structures using PEEK as biomaterial, with 4 test conditions modeled and compared. An occlusal load was applied (230 N at 90˚ and 30˚) on the implants. Isotropic, linear elastic, and homogeneous were considerate as properties of the components.ResultsUnder axial loads, all models stayed within physiological stress limits, while under 30° oblique loading, Model 3 showed the lowest stress, strain, and pressure.ConclusionsFEA results indicate that 3D-printed dental implants, particularly the optimized Model 3, maintain safe stress levels under axial and oblique loads, supporting their potential for immediate loading. However, due to numerical limitations, experimental validation remains necessary to advance implant designs that optimize bone regeneration and material efficiency.
背景
对牙种植体的需求不断增加,这就需要探索先进的材料和制造技术。三维(3D)打印已成为生产定制牙种植体的一种可行方法,能够实现复杂的设计并改善针对患者的适配性。本研究聚焦于使用有限元分析(FEA)对3D打印牙种植体进行设计和结构变形评估。通过模拟这些种植体在实际加载条件下的力学行为,我们旨在评估其性能并预测潜在的失效点,最终提高它们在临床应用中的可靠性和使用寿命。
目的
本研究的主要目的是使用有限元分析(FEA)对三维(3D)打印牙种植体进行全面的设计和结构变形评估。具体而言,该研究旨在:
评估三种3D打印牙种植体设计在模拟生理负荷下的应力分布和变形模式。
比较聚醚醚酮(PEEK)和碳纤维增强聚醚醚酮(CFR-PEEK)在咬合力作用下的刚度、强度和弹性行为。
通过分析高应力集中来识别种植体和骨-种植体界面的失效点。
通过有限元分析(FEA)确定新型牙种植体的弹性模量,从而预测其生物力学行为。
方法
设计了三个3D模型,以了解使用聚醚醚酮(PEEK)作为生物材料时不同结构的应力分布,并对4种测试条件进行建模和比较。对种植体施加咬合力(在90˚和30˚时为230 N)。各部件的属性被视为各向同性、线弹性和均匀性。
结果
在轴向载荷下,所有模型均保持在生理应力极限范围内,而在30°斜向载荷下,模型3的应力、应变和压力最低。
结论
有限元分析结果表明,3D打印牙种植体,特别是优化后的模型3,在轴向和斜向载荷下保持安全的应力水平,这支持了它们立即加载的潜力。然而,由于数值限制,仍需要进行实验验证,以推进优化骨再生和材料效率的种植体设计。