Suppr超能文献

基于机器学习的中国肺癌患者围手术期静脉血栓栓塞症的术前预测:一项回顾性队列研究

Machine learning-based preoperative prediction of perioperative venous thromboembolism in Chinese lung cancer patients: a retrospective cohort study.

作者信息

Chen Zhe, Qiang Min, Hong Yang, Tian Weibo, Tang Mingbo, Liu Wei

机构信息

Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China.

College of Clinical Medicine, Jilin University, Changchun, China.

出版信息

Front Oncol. 2025 Jun 25;15:1588817. doi: 10.3389/fonc.2025.1588817. eCollection 2025.

Abstract

BACKGROUND

Perioperative venous thromboembolism (VTE) is a severe complication in lung cancer surgery. Traditional prediction models have limitations in handling complex clinical data, whereas machine learning (ML) offers enhanced predictive accuracy. This study aimed to develop and validate an ML-based model for preoperative VTE risk assessment.

METHODS

A retrospective cohort of 1,013 lung cancer patients who underwent surgery at the First Hospital of Jilin University (April 2021-December 2023) was analyzed. Preoperative clinical and laboratory data were collected, and six key predictors-age, mean corpuscular volume, mean corpuscular hemoglobin, fibrinogen, D-dimer, and albumin-were identified using univariate analysis and Lasso regression. Eight ML models, including extreme gradient boosting (XGB), random forest, logistic regression, and support vector machines, were trained and evaluated using AUC, precision-recall curves, decision curve analysis, and calibration curves.

RESULTS

VTE occurred in 175 patients (17.3%). The XGB model demonstrated the highest predictive performance (AUC: 0.99 training, 0.66 validation; AUPRC: 0.323), with age and mean corpuscular volume identified as the most influential predictors. An online prediction tool was developed for clinical application.

CONCLUSION

The ML-based XGB model provides a reliable preoperative risk assessment for VTE in lung cancer patients, enabling early risk stratification and personalized thromboprophylaxis.

摘要

背景

围手术期静脉血栓栓塞症(VTE)是肺癌手术中的一种严重并发症。传统预测模型在处理复杂临床数据方面存在局限性,而机器学习(ML)可提高预测准确性。本研究旨在开发并验证一种基于ML的术前VTE风险评估模型。

方法

对吉林大学第一医院(2021年4月至2023年12月)接受手术的1013例肺癌患者进行回顾性队列分析。收集术前临床和实验室数据,通过单因素分析和Lasso回归确定六个关键预测因素——年龄、平均红细胞体积、平均红细胞血红蛋白、纤维蛋白原、D-二聚体和白蛋白。使用AUC、精确召回率曲线、决策曲线分析和校准曲线对包括极端梯度提升(XGB)、随机森林、逻辑回归和支持向量机在内的八个ML模型进行训练和评估。

结果

175例患者(17.3%)发生VTE。XGB模型表现出最高的预测性能(AUC:训练集为0.99,验证集为0.66;AUPRC:0.323),年龄和平均红细胞体积被确定为最具影响力的预测因素。开发了一种在线预测工具用于临床应用。

结论

基于ML的XGB模型为肺癌患者术前VTE风险评估提供了可靠方法,能够实现早期风险分层和个性化血栓预防。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab4/12238019/c30b8f89c8a7/fonc-15-1588817-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验