Muhammad Yasir Siddiqui, Kim Hyun
Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, Seoul, South Korea.
PLoS One. 2025 Jul 10;20(7):e0327513. doi: 10.1371/journal.pone.0327513. eCollection 2025.
Spiking neural networks (SNNs) are emerging as a promising evolution in neural network paradigms, offering an alternative to conventional convolutional neural networks (CNNs). One of the most effective methods for SNN development is the CNN-to-SNN conversion process. However, existing conversion techniques are hindered by long temporal durations or inference latencies, which negatively impact the accuracy of the converted networks. Additionally, the application of SNNs in object detection tasks remains largely under-explored. In this study, we propose a novel approach utilizing a bistable integrate-and-fire (BIF) neuron model integrated with a single-shot multibox detector (SSD) as the detection head. Leveraging the proposed BIF neuron framework, we convert the widely used ResNet architecture into an SNN. We validate the effectiveness of our approach through object detection tasks on the MS-COCO and Automotive GEN1 datasets. Experimental results show that our conversion technique facilitates object detection with reduced temporal steps and significant enhancements in mean average precision (mAP), achieving mAP@0.5 scores of 0.476 and 0.591 for the MS-COCO and Automotive GEN1 datasets, respectively. This research marks the first application of BIF neurons to object detection, presenting a novel advancement in the field.
脉冲神经网络(SNN)正在成为神经网络范式中一个有前途的发展方向,为传统卷积神经网络(CNN)提供了一种替代方案。SNN开发中最有效的方法之一是CNN到SNN的转换过程。然而,现有的转换技术受到长时间持续时间或推理延迟的阻碍,这对转换后网络的准确性产生负面影响。此外,SNN在目标检测任务中的应用在很大程度上仍未得到充分探索。在本研究中,我们提出了一种新颖的方法,利用双稳态积分发放(BIF)神经元模型与单阶段多框检测器(SSD)集成作为检测头。利用所提出的BIF神经元框架,我们将广泛使用的ResNet架构转换为SNN。我们通过在MS-COCO和汽车GEN1数据集上的目标检测任务验证了我们方法的有效性。实验结果表明,我们的转换技术通过减少时间步长促进了目标检测,并显著提高了平均精度均值(mAP),在MS-COCO和汽车GEN1数据集上分别实现了0.476和0.591的mAP@0.5分数。这项研究标志着BIF神经元在目标检测中的首次应用,展示了该领域的一项新进展。