Suppr超能文献

集成冲击电离场效应晶体管神经元和铁电场效应晶体管突触的脉冲神经网络。

Spiking Neural Network Integrated with Impact Ionization Field-Effect Transistor Neuron and a Ferroelectric Field-Effect Transistor Synapse.

作者信息

Choi Haeju, Baek Sungpyo, Jung Hanggyo, Kang Taeho, Lee Sangmin, Jeon Jongwook, Jang Byung Chul, Lee Sungjoo

机构信息

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea.

Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea.

出版信息

Adv Mater. 2024 Sep 5:e2406970. doi: 10.1002/adma.202406970.

Abstract

The integration of artificial spiking neurons based on steep-switching logic devices and artificial synapses with neuromorphic functions enables an energy-efficient computer architecture that mimics the human brain well, known as a spiking neural network (SNN). 2D materials with impact ionization or ferroelectric characteristics have the potential for use in such devices. However, research on 2D spiking neurons remains limited and investigations of 2D artificial synapses far more common. An innovative 2D spiking neuron is implemented using a WSe impact ionization transistor (IFET), while a spiking neural network is formed by combining it with a 2D ferroelectric synaptic device (FeFET). The suggested 2D spiking neuron demonstrates precise spiking behavior that closely resembles that of actual neurons. In addition, it achieves a low energy consumption of 2 pJ/spike. The better impact ionization properties of WSe are responsible for this efficiency. Furthermore, an all-2D SNN consisting of 2D IFET neurons and 2D FeFET synapses is constructed, which achieves high accuracy of 87.5% in a face classification task by unsupervised learning. The integration of a 2D SNN with 2D steep-switching spiking neuronal devices and 2D synaptic devices shows great potential for the development of neuromorphic systems with improved energy efficiency and computational capabilities.

摘要

基于具有陡峭开关逻辑功能的器件的人工脉冲神经元与具有神经形态功能的人工突触的集成,能够实现一种能效高且能很好模拟人类大脑的计算机架构,即脉冲神经网络(SNN)。具有碰撞电离或铁电特性的二维材料有潜力用于此类器件。然而,关于二维脉冲神经元的研究仍然有限,而二维人工突触的研究更为常见。一种创新的二维脉冲神经元是利用WSe碰撞电离晶体管(IFET)实现的,而一个脉冲神经网络则是通过将其与二维铁电突触器件(FeFET)相结合形成的。所提出的二维脉冲神经元展示出与实际神经元非常相似的精确脉冲行为。此外,它实现了每个脉冲2皮焦的低能耗。WSe更好的碰撞电离特性造就了这种高效性。此外,构建了一个由二维IFET神经元和二维FeFET突触组成的全二维SNN,该网络在无监督学习的面部分类任务中实现了87.5%的高精度。二维SNN与二维陡峭开关脉冲神经元器件和二维突触器件的集成,在开发具有更高能效和计算能力的神经形态系统方面显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验