Guo Hong, Zhang Weiwei, He Linxin, Fu Yang, Li Wei, Chen Mei
Clinical Laboratory, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China.
Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases of Sichuan Higher Education Institutes, School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China.
Biosens Bioelectron. 2025 Nov 1;287:117723. doi: 10.1016/j.bios.2025.117723. Epub 2025 Jun 26.
The high mortality rate associated with metastasis poses a major threat to human health. Circulating tumor cells (CTCs), being the dominant factor leading to tumor metastasis, are an advantageous target of liquid biopsy and an important biomarker for prognosis and cancer monitoring. Here, we report a sensing strategy based on accordion-like multilayered TiC MXene-polyaniline-palladium nanoparticles (MXene/PANI-Pd) and dual aptamer rolling circle-amplified (RCA) 3D DNA networks to trap CTCs and generate electrochemical signals. The abundance of metal active sites on TiC MXene, the high electron transfer efficiency of PANI, and the favorable catalytic properties of Pd NPs markedly improved the electrochemical performance of the composite nanomaterials. Biorecognition aptamers (sgc8c and SYL3C) were combined with RCA to generate 3D DNA networks whose structures enhanced their affinity to epithelial adhesion molecules in CTCs (MCF-7 cells). Under optimized conditions, the constructed sensor showed a satisfactory detection performance for MCF-7 cells in the range of 10 to 1 × 10 cells/mL, with a detection limit of 8 cells/mL. In addition, the responsive CRISPR/Cas12a system activated Cas12a nuclease, which cleaved dsDNA in a specific base-pairing manner to initiate deoxyribonuclease activity, releasing captured cells without causing damage or destruction. This strategy facilitates non-destructive recycling and regeneration, providing new opportunities for cell biology research. Collectively, this RCA-based DNA network capture method can be expanded to create a versatile platform for detecting various CTCs at low concentrations and enabling non-destructive recycling using CRISPR/Cas12a.
与转移相关的高死亡率对人类健康构成了重大威胁。循环肿瘤细胞(CTCs)是导致肿瘤转移的主要因素,是液体活检的有利靶点以及预后和癌症监测的重要生物标志物。在此,我们报告了一种基于手风琴状多层TiC MXene-聚苯胺-钯纳米颗粒(MXene/PANI-Pd)和双适体滚环扩增(RCA)三维DNA网络的传感策略,用于捕获CTCs并产生电化学信号。TiC MXene上丰富的金属活性位点、PANI的高电子转移效率以及Pd NPs良好的催化性能显著提高了复合纳米材料的电化学性能。生物识别适体(sgc8c和SYL3C)与RCA相结合,生成三维DNA网络,其结构增强了它们与CTCs(MCF-7细胞)中上皮粘附分子的亲和力。在优化条件下,构建的传感器对MCF-7细胞在10至1×10细胞/mL范围内表现出令人满意的检测性能,检测限为8细胞/mL。此外,响应性CRISPR/Cas12a系统激活了Cas12a核酸酶,其以特定碱基配对方式切割双链DNA以启动脱氧核糖核酸酶活性,释放捕获的细胞而不造成损伤或破坏。这种策略有助于无损回收和再生,为细胞生物学研究提供了新机会。总体而言,这种基于RCA的DNA网络捕获方法可以扩展,以创建一个通用平台,用于低浓度检测各种CTCs,并使用CRISPR/Cas12a实现无损回收。