Mondal Mou, Chouksey Apoorva, Gurjar Vikas, Tiwari Rajnarayan, Srivasatava Rupesh K, Mishra Pradyumna Kumar
Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India.
Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
Neurotoxicol Teratol. 2025 Jul-Aug;110:107521. doi: 10.1016/j.ntt.2025.107521. Epub 2025 Jul 8.
As global plastic production escalates, micro(nano)plastics (MNPs) have become pressing ecological and biomedical concerns. These pollutants are increasingly implicated in the pathogenesis of neurodegenerative diseases. Due to their nanoscale size and surface reactivity, MNPs can cross the blood-brain barrier, accumulating in neural tissues. Once internalized, they disrupt neuronal homeostasis by inducing oxidative stress, mitochondrial dysfunction, and chronic neuroinflammation, key processes in neurodegenerative progression. Mitochondria, central to neuronal energy and redox regulation, are particularly vulnerable, leading to impaired ATP production, elevated ROS, and pro-apoptotic signaling. Recent studies reveal that MNPs also induce epigenetic changes, including aberrant DNA methylation, histone modifications, and dysregulation of non-coding RNAs. These alterations can result in synaptic instability, persistent transcriptional reprogramming, and heightened susceptibility to diseases like Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. The mitochondrial epigenome is a vital target of MNP-induced disruption, offering potential biomarkers like methylated mtDNA and microRNAs for early diagnosis and prognosis. Understanding the molecular mechanisms behind these epigenetic alterations is essential for developing practical diagnostic tools and therapies. This review provides a comprehensive overview of MNP-induced neurodegeneration, focusing on mitochondrial and epigenetic disruptions. Moreover, it explores emerging biosensing technologies for detecting MNP-induced epigenetic alterations, highlighting the urgent need for further investigation to fully understand the neurotoxic potential of MNPs and develop preventive and therapeutic strategies for mitigating their effects on brain health.
随着全球塑料产量的不断增加,微(纳)塑料(MNPs)已成为紧迫的生态和生物医学问题。这些污染物越来越多地与神经退行性疾病的发病机制相关。由于其纳米级尺寸和表面反应性,MNPs可以穿过血脑屏障,在神经组织中积累。一旦被内化,它们会通过诱导氧化应激、线粒体功能障碍和慢性神经炎症来破坏神经元的稳态,而这些是神经退行性病变的关键过程。线粒体对于神经元的能量和氧化还原调节至关重要,特别容易受到影响,导致ATP生成受损、活性氧升高和促凋亡信号传导。最近的研究表明,MNPs还会诱导表观遗传变化,包括异常的DNA甲基化、组蛋白修饰和非编码RNA的失调。这些改变可能导致突触不稳定、持续的转录重编程以及对阿尔茨海默病、帕金森病和肌萎缩侧索硬化症等疾病的易感性增加。线粒体表观基因组是MNP诱导破坏的重要靶点,为早期诊断和预后提供了甲基化线粒体DNA和微小RNA等潜在生物标志物。了解这些表观遗传改变背后的分子机制对于开发实用的诊断工具和治疗方法至关重要。本综述全面概述了MNP诱导的神经退行性变,重点关注线粒体和表观遗传破坏。此外,它还探讨了用于检测MNP诱导的表观遗传改变的新兴生物传感技术,强调迫切需要进一步研究,以充分了解MNPs的神经毒性潜力,并制定预防和治疗策略来减轻其对大脑健康的影响。