Suppr超能文献

人工智能集成药物发现的当前进展:方法与应用。

Current advancement in AI-integrated drug discovery: Methods and applications.

作者信息

Mathur Yash, Choudhury Arunabh, Prabha Sneh, Saeed Mohammad Umar, Sulaimani Md Nayab, Mohammad Taj, Hassan Md Imtaiyaz

机构信息

Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.

Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.

出版信息

Biotechnol Adv. 2025 Oct;83:108642. doi: 10.1016/j.biotechadv.2025.108642. Epub 2025 Jul 8.

Abstract

Artificial intelligence (AI) has grown in prominence over the decade and continues to advance frighteningly. With additional research in the computer hardware field, the accuracy and precision of AI models will increase exponentially. The interdisciplinary nature of AI expands the possibility of application in every field of study. The use of AI in human healthcare has also been on the rise, with the involvement of interactive models. Since drug development is a prominent part of the field, there are bound to be AI models capable of improving parameters and predictions for various techniques. This review explores the recent developments in the applications of AI in the scope of drug discovery. Focusing on the workflow of a standard interdisciplinary drug discovery approach, this review aims to provide information about various AI-enabled tools in the field. We begin with an in-depth overview of the different AI models and architectures frequently employed in the field. Next, we reviewed the applications of AI in drug discovery, discussing the state-of-the-art models and tools employed for topics such as data analysis, functional annotation, virtual screening, clinical trial optimization, and much more. Discussing the prospects, challenges, and limitations that the field faces, this review attempts to encompass the essence of AI-based drug discovery. We anticipate this review will aid the innovation of more brilliant AI tools for various subtopics of the drug discovery and development field.

摘要

在过去十年中,人工智能(AI)的重要性日益凸显,并且仍在以惊人的速度不断发展。随着计算机硬件领域的进一步研究,人工智能模型的准确性和精确性将呈指数级增长。人工智能的跨学科性质扩大了其在各个研究领域的应用可能性。人工智能在人类医疗保健中的应用也在不断增加,其中涉及交互式模型。由于药物开发是该领域的一个重要组成部分,必然会有能够改进各种技术参数和预测的人工智能模型。本综述探讨了人工智能在药物发现领域应用的最新进展。围绕标准跨学科药物发现方法的工作流程,本综述旨在提供该领域各种人工智能工具的相关信息。我们首先深入概述该领域常用的不同人工智能模型和架构。接下来,我们回顾了人工智能在药物发现中的应用,讨论了用于数据分析、功能注释、虚拟筛选、临床试验优化等主题的最新模型和工具。在讨论该领域面临的前景、挑战和局限性时,本综述试图涵盖基于人工智能的药物发现的本质。我们预计本综述将有助于为药物发现和开发领域的各个子主题创新更出色的人工智能工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验