Mura Jean, Ranchou-Peyruse Magali, Guignard Marion, Ducousso Marion, Isaure Marie-Pierre, Sénéchal Pascale, Moonen Peter, Poulain Marie, De Souza Buriti Mateus, Petit Anélia, Chiquet Pierre, Caumette Guilhem, Cezac Pierre, Ranchou-Peyruse Anthony
Universite de Pau et des Pays de l'Adour, E2S UPPA, LaTEP, Pau 64012, France.
Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64012, France.
Environ Sci Technol. 2025 Jul 22;59(28):14388-14398. doi: 10.1021/acs.est.5c00955. Epub 2025 Jul 10.
The successful integration of dihydrogen (H) as an energy vector relies on effective seasonal storage in underground facilities like deep aquifers. However, the viability of this storage remains uncertain due to the unclear behavior of indigenous microorganisms in the presence of H, which could influence the gas composition. While modeling can inform H dynamics, reactor-scale experiments are needed for validation. In our study, we used a high-pressure reactor to simulate injecting 2% H into a gas storage aquifer currently used for natural gas (CH, 1% CO), utilizing formation water and rock samples from the aquifer. Our research led to a kinetic model that analyzes the interactions among gas, water, rock, and microbial activities. We found that microorganisms consumed H and caused alkalinization, which inhibited further microbial growth and respiration. This suggests that after an initial decrease in H concentration, the gas storage may be stabilized in deep aquifers. Reducing CO levels is vital as CO can hinder alkalinization and enhance sulfate-reducing, methanogenic, and acetogenic activities. Notably, while H-utilizing microorganisms were predominant, both methanogens and sulfate-reducers showed significant activity. Overall, our findings provide insights into the potential for underground H storage in deep aquifers, guiding future research and energy storage applications.
将氢气(H)作为一种能量载体成功整合,依赖于在诸如深层含水层等地下设施中的有效季节性储存。然而,由于在氢气存在的情况下本地微生物的行为尚不清楚,这可能会影响气体成分,因此这种储存的可行性仍不确定。虽然建模可以为氢气动态提供信息,但仍需要进行反应器规模的实验来进行验证。在我们的研究中,我们使用高压反应器模拟将2%的氢气注入目前用于储存天然气(CH,1% CO)的储气含水层,利用该含水层的地层水和岩石样本。我们的研究得出了一个动力学模型,该模型分析了气体、水、岩石和微生物活动之间的相互作用。我们发现微生物消耗氢气并导致碱化,这抑制了进一步的微生物生长和呼吸。这表明在氢气浓度最初下降之后,储气层在深层含水层中可能会趋于稳定。降低CO水平至关重要,因为CO会阻碍碱化并增强硫酸盐还原、产甲烷和产乙酸活动。值得注意的是,虽然利用氢气的微生物占主导地位,但产甲烷菌和硫酸盐还原菌都表现出显著的活性。总体而言,我们的研究结果为深层含水层中地下氢气储存的潜力提供了见解,为未来的研究和储能应用提供了指导。