Suppr超能文献

机器学习驱动的全基因组关联研究揭示了可可对霜霉病和扫帚病抗性的新候选基因。

Machine learning-driven GWAS uncovers novel candidate genes for resistance to frosty pod rot and witches' broom disease in cacao.

作者信息

Ahn Ezekiel, Park Sunchung, Baek Insuck, Lee Dongho, Bhatt Jishnu, Lim Seunghyun, Jang Jae Hee, Zhang Dapeng, Kim Moon S, Meinhardt Lyndel W

机构信息

USDA-ARS, Sustainable Perennial Crops Laboratory, Beltsville, Maryland, USA.

USDA-ARS, Agriculture, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA.

出版信息

Plant Genome. 2025 Sep;18(3):e70069. doi: 10.1002/tpg2.70069.

Abstract

Cacao (Theobroma cacao), the source of chocolate, is threatened by devastating diseases like frosty pod rot (FPR) and witches' broom disease (WBD), impacting global production and farmer livelihoods. Here, we employ a machine learning-driven genome-wide association study to dissect the genetic architecture of disease resistance and productivity in cacao. Upon analyzing phenotypic data for healthy pod rate along with FPR and WBD resistance across 102 diverse accessions, coupled with single nucleotide polymorphism (SNP) markers mapped to the Criollo and Matina reference genomes, we identified numerous novel candidate genes. These genes are implicated in various biological processes, including cell wall modification, stress response signaling, and defense-related mechanisms. Notably, associations varied between the reference genomes, highlighting the genomic complexity of these traits. Our analyses, using Bootstrap Forest and Boosted Tree models, uncovered loci not previously reported, demonstrating the power of machine learning in uncovering complex genetic interactions. This study offers important insights into the polygenic nature of disease resistance in cacao and presents a genomic roadmap for developing disease-resistant varieties.

摘要

可可(Theobroma cacao)是巧克力的原料,正受到霜霉病(FPR)和扫帚病(WBD)等毁灭性疾病的威胁,影响着全球产量和农民生计。在此,我们采用机器学习驱动的全基因组关联研究来剖析可可抗病性和生产力的遗传结构。在分析了102个不同种质的健康荚果率以及对FPR和WBD的抗性的表型数据,并结合定位到克里奥罗和马蒂纳参考基因组的单核苷酸多态性(SNP)标记后,我们鉴定出了许多新的候选基因。这些基因涉及各种生物学过程,包括细胞壁修饰、应激反应信号传导和防御相关机制。值得注意的是,参考基因组之间的关联各不相同,凸显了这些性状的基因组复杂性。我们使用Bootstrap Forest和Boosted Tree模型进行的分析发现了以前未报道的基因座,证明了机器学习在揭示复杂遗传相互作用方面的力量。这项研究为可可抗病性的多基因性质提供了重要见解,并为培育抗病品种提供了基因组路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd2/12245736/a23563c170d3/TPG2-18-e70069-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验