Ake Franz, Schilling Marcel, Fernández-Moya Sandra M, Jaya Ganesh Akshay, Gutiérrez-Franco Ana, Li Lei, Plass Mireya
Gene Regulation of Cell Identity Lab, Neurosciences Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Spain.
University of Barcelona, Barcelona, Spain.
Nat Commun. 2025 Jul 11;16(1):6402. doi: 10.1038/s41467-025-61118-0.
Single-cell RNA sequencing (scRNA-seq) facilitates the study of transcriptome diversity in individual cells. Yet, many existing methods lack sensitivity and accuracy. Here we introduce SCALPEL, a Nextflow-based tool to quantify and characterize transcript isoforms from standard 3' scRNA-seq data. Using synthetic data, SCALPEL demonstrates higher sensitivity and specificity compared to other tools. In real datasets, SCALPEL predictions have a high agreement with other tools and can be experimentally validated. The use of SCALPEL on real datasets reveals novel cell populations undetectable using single-cell gene expression data, confirms known 3' UTR length changes during cell differentiation, and identifies cell-type specific miRNA signatures regulating isoform expression. Additionally, we show that SCALPEL improves isoform quantification using paired long- and short-read scRNA-seq data. Overall, SCALPEL expands the current scRNA-seq toolkit to explore post-transcriptional gene regulation across species, tissues, and technologies, advancing our understanding of gene regulatory mechanisms at the single-cell level.
单细胞RNA测序(scRNA-seq)有助于研究单个细胞中的转录组多样性。然而,许多现有方法缺乏灵敏度和准确性。在此,我们介绍了SCALPEL,这是一种基于Nextflow的工具,用于从标准的3' scRNA-seq数据中定量和表征转录本异构体。通过合成数据,SCALPEL与其他工具相比显示出更高的灵敏度和特异性。在真实数据集中,SCALPEL的预测与其他工具高度一致,并且可以通过实验验证。在真实数据集中使用SCALPEL揭示了使用单细胞基因表达数据无法检测到的新型细胞群体,证实了细胞分化过程中已知的3' UTR长度变化,并鉴定了调节异构体表达的细胞类型特异性miRNA特征。此外,我们表明SCALPEL使用配对的长读长和短读长scRNA-seq数据改进了异构体定量。总体而言,SCALPEL扩展了当前的scRNA-seq工具包,以探索跨物种、组织和技术的转录后基因调控,推进了我们在单细胞水平上对基因调控机制的理解。