Ishiki Nicolas A, Teixeira Santos Keyla, Bibent Nicolas, Kumar Kavita, Reichmann Ina, Ku Yu-Ping, Asset Tristan, Dubau Laetitia, Mermoux Michel, Ge Hongxin, Berthon-Fabry Sandrine, Saveleva Viktoriia A, Paidi Vinod K, Glatzel Pieter, Zitolo Andrea, Mineva Tzonka, Guesmi Hazar, Cherevko Serhiy, Ticianelli Edson A, Maillard Frédéric, Jaouen Frédéric
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France.
Instituto de Química de São Carlos (IQSC), Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, CP 780, São Carlos, SP, Brazil.
Nat Commun. 2025 Jul 11;16(1):6404. doi: 10.1038/s41467-025-61806-x.
While Fe-N-C materials have shown promising initial oxygen reduction reaction (ORR) activity, they lack durability in acidic medium. Key degradation mechanisms include FeN site demetallation and deactivation by reactive oxygen species. Here we show for mainstream Fe-N-Cs that adding 1 wt.% Pt nanoparticles via a soft polyol method results in well-defined and stable Pt/Fe-N-C hybrids. The Pt addition strongly reduces the HO production and Fe leaching rate during ORR, while post mortem Mössbauer spectroscopy reveals that the highly active but unstable Fe(III)N site is partially stabilized. The similar HO electroreduction activity of Pt/Fe-N-C and Fe-N-C and other analyses point toward a long-distance electronic effect of Pt nanoparticles in stabilizing FeN sites. Computational chemistry reveals that spin polarization of distant Pt atoms mitigates the structural changes of FeN sites upon adsorption of oxygenated species atop Fe, especially in high-spin state.
虽然铁氮碳(Fe-N-C)材料已展现出可观的初始氧还原反应(ORR)活性,但它们在酸性介质中缺乏耐久性。关键的降解机制包括FeN位点的脱金属以及活性氧物种导致的失活。在此我们表明,对于主流的Fe-N-C材料,通过软多元醇法添加1 wt.%的铂纳米颗粒会生成结构明确且稳定的Pt/Fe-N-C杂化物。添加铂极大地降低了ORR过程中HO的生成以及铁的浸出率,而事后穆斯堡尔光谱显示,高活性但不稳定的Fe(III)N位点得到了部分稳定。Pt/Fe-N-C和Fe-N-C相似的HO电还原活性以及其他分析表明,铂纳米颗粒在稳定FeN位点方面存在长程电子效应。计算化学表明,远处铂原子的自旋极化减轻了在铁顶部吸附氧化态物种时FeN位点的结构变化,尤其是在高自旋态时。