Cravo Maria Inês, Bernardes Rui, Castelo-Branco Miguel
Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
Sci Rep. 2025 Jul 10;15(1):24964. doi: 10.1038/s41598-025-07699-8.
Adaptation is a form of short-term plasticity triggered by prolonged stimulus exposure, altering perceptual sensitivity to stimulus features through reduced neuronal firing rates. Our previous studies investigated adaptation to bistable stimuli, specifically inward-moving gratings perceived either as a plaid moving coherently downward or two gratings moving incoherently. Using functional magnetic resonance imaging (fMRI), we have consistently observed a stronger response to incoherent rather than coherent motion. Possible mechanisms include stronger adaptation to coherent motion, greater neural involvement for the representation of incoherent motion or both. Here, we employ a computational model of visual neurons with and without firing rate adaptation to test these two hypotheses. By simulating the mean activity of thirty-two columnar populations of visual area MT, we investigate the impact of adaptation on the blood-oxygen-level-dependent (BOLD) signal. Our results replicate experimental findings only when the model includes adaptation. The simulated response to incoherent motion is larger for a variety of stimulus parameters and adaptation regimes, suggesting that the reduced response to coherent stimuli is due to smaller neuronal population activation. The model also explains differential motion after-effect responses. The joint role of adaptation and differential neuronal recruitment in bistable perception sheds light on mechanisms underlying experimental data.
适应是一种由长时间刺激暴露引发的短期可塑性形式,通过降低神经元放电率来改变对刺激特征的感知敏感性。我们之前的研究调查了对双稳态刺激的适应,特别是向内移动的光栅,它可以被感知为一个连贯向下移动的格子图案,或者两个不连贯移动的光栅。使用功能磁共振成像(fMRI),我们一直观察到对不连贯运动的反应比对连贯运动的反应更强。可能的机制包括对连贯运动更强的适应、对不连贯运动表征更大的神经参与或两者兼而有之。在这里,我们采用具有和不具有放电率适应的视觉神经元计算模型来检验这两个假设。通过模拟视觉区域MT的32个柱状群体的平均活动,我们研究了适应对血氧水平依赖(BOLD)信号的影响。只有当模型包括适应时,我们的结果才复制了实验结果。对于各种刺激参数和适应机制,对不连贯运动的模拟反应更大,这表明对连贯刺激的反应降低是由于较小的神经元群体激活。该模型还解释了差异运动后效反应。适应和差异神经元募集在双稳态感知中的联合作用揭示了实验数据背后的机制。