Suppr超能文献

利用数据驱动聚类方法进行农业灌溉渠道的水化学剖面分析及污染物源识别

Hydro-chemical profiling and contaminant source identification in agricultural canals using data driven clustering approaches.

作者信息

Songara Yashaswi, Singhal Anupam, Garg Rahul Dev, Rallapalli Srinivas

机构信息

Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.

Civil Engineering Department, Indian Institute of Technology, Roorkee, Dehradun, India.

出版信息

Sci Rep. 2025 Jul 10;15(1):24806. doi: 10.1038/s41598-025-08620-z.

Abstract

Canal networks are vital for irrigated agriculture in semi-arid regions, yet their water quality is increasingly endangered by diffuse agro-chemical runoff and unregulated effluent discharges. Despite this growing risk, long-term, high-resolution assessments that simultaneously capture spatial patterns and seasonal dynamics remain scarce-leaving practitioners with limited evidence for targeted interventions. Addressing this gap, the study sampled ten canal sites monthly for 11 months across Charkhi Dadri District (Haryana, India) and analysed sixteen physicochemical parameters, including heavy metals and irrigation-relevant ions. A suite of multivariate techniques-R- and Q-mode hierarchical clustering, principal-component analysis (PCA), correlation matrices and one-way ANOVA-was employed to disentangle pollution drivers, while the Irrigation Water Quality Index (IWQI) translated complex chemistry into management-ready scores. Two principal components explained 72.6% of variance, with aluminium, iron and copper emerging as dominant contributors; ANOVA revealed significant seasonal shifts (p < 0.05) in these metals. Cluster analysis pinpointed contamination hotspots, and IWQI values of 67.3-85.5 classified canal water as "good" to "very good" for irrigation. By integrating granular spatiotemporal monitoring with advanced multivariate statistics, the study delivers a scalable framework for managing irrigation canals in data-limited, semi-arid landscapes.

摘要

运河网络对于半干旱地区的灌溉农业至关重要,然而其水质正日益受到农业化学物质的分散径流和未经监管的污水排放的威胁。尽管风险不断增加,但能够同时捕捉空间格局和季节动态的长期、高分辨率评估仍然很少,这使得从业者在进行有针对性的干预时缺乏足够的证据。为了填补这一空白,该研究在印度哈里亚纳邦查尔希达德里区的10个运河站点进行了为期11个月的月度采样,并分析了16种理化参数,包括重金属和与灌溉相关的离子。采用了一系列多元技术——R型和Q型层次聚类、主成分分析(PCA)、相关矩阵和单因素方差分析——来厘清污染驱动因素,而灌溉水质指数(IWQI)则将复杂的化学指标转化为便于管理的分数。两个主成分解释了72.6%的方差,铝、铁和铜是主要贡献因素;方差分析显示这些金属存在显著的季节性变化(p < 0.05)。聚类分析确定了污染热点,IWQI值在67.3至85.5之间,表明运河水对灌溉来说属于“良好”到“非常良好”。通过将精细的时空监测与先进的多元统计方法相结合,该研究为在数据有限的半干旱地区管理灌溉运河提供了一个可扩展的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac2b/12246494/b298742f0356/41598_2025_8620_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验