Wang Ning, Sun Chengyang, Yang Yijie, Zhang Dandan, Huang Lulu, Xu Chenrui, Wang Minghan, Xu Mengmeng, Yan Tongtong, Wu Yue, Xu Li, Ju Yahan, Sun Hao, Guo Wenyi
Department of Ophthalmology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
J Neuroinflammation. 2025 Jul 10;22(1):179. doi: 10.1186/s12974-025-03505-4.
Gut microbiota has emerged as a promising therapeutic target for neurodegenerative disorders through regulation of neuroinflammatory responses, while its role in optic nerve degeneration remains incompletely characterized. This study elucidates the neuroprotective role of gut microbiota derived tryptophan metabolites in glaucoma through gut-eye communication and inhibition of microglia-mediated neuroinflammation.
Gut microbiota profiling (16 S rRNA sequencing) and serum indoleacetic acid (IAA) quantification were performed in glaucoma patients versus controls. Microbiota-metabolite relationships were further validated through fecal microbiota transplantation (FMT). The neuroprotective and anti-neuroinflammatory effect of Bacteroides fragilis (B. fragilis) and IAA was assessed in both microbead-induced ocular hypertension mice model and in vitro BV-2 microglial cell inflammation model via immunofluorescence, qPCR, Western blot and mice behavioral assays. To explore the underlying mechanisms, retinal transcriptomics and microglia-neuron co-cultures were also employed.
Glaucoma patients exhibited gut dysbiosis characterized by depleted tryptophan-metabolizing bacteria (B. fragilis, Bacteroides thetaiotaomicron, Anaerostipes hadrus) and reduced serum IAA levels. Mice receiving FMT from glaucoma patients exhibited lower systemic IAA levels. In in vivo and in vitro models, B. fragilis or IAA restored AhR activation, suppressed inflammation by inhibiting microglial activation and the release of pro-inflammatory mediators throughout the retina, reduced retinal ganglion cells (RGCs) loss and preserved visual function. Mechanistically, IAA attenuated RAGE/NF-κB pathway activation via AhR-dependent signaling, conferring neuroprotection.
Our study proposes a novel AhR-mediated gut microbiota-eye axis in glaucoma pathogenesis and demonstrates that IAA serves as an effective neuroprotective strategy with clinical potential for managing RGCs neurodegeneration.
肠道微生物群已成为神经退行性疾病一个有前景的治疗靶点,可通过调节神经炎症反应发挥作用,但其在视神经变性中的作用仍未完全明确。本研究通过肠-眼通讯及抑制小胶质细胞介导的神经炎症,阐明肠道微生物群衍生的色氨酸代谢产物在青光眼中的神经保护作用。
对青光眼患者和对照组进行肠道微生物群分析(16S rRNA测序)及血清吲哚乙酸(IAA)定量检测。通过粪便微生物群移植(FMT)进一步验证微生物群与代谢产物之间的关系。在微珠诱导的高眼压小鼠模型和体外BV-2小胶质细胞炎症模型中,通过免疫荧光、qPCR、蛋白质印迹和小鼠行为学检测,评估脆弱拟杆菌(B. fragilis)和IAA的神经保护及抗神经炎症作用。为探究潜在机制,还采用了视网膜转录组学和小胶质细胞-神经元共培养方法。
青光眼患者表现出肠道菌群失调,其特征为色氨酸代谢细菌(脆弱拟杆菌、多形拟杆菌、哈氏厌氧棒状菌)减少,血清IAA水平降低。接受青光眼患者FMT的小鼠全身IAA水平较低。在体内和体外模型中,脆弱拟杆菌或IAA恢复芳烃受体(AhR)激活,通过抑制小胶质细胞激活及整个视网膜中促炎介质的释放来抑制炎症,减少视网膜神经节细胞(RGC)丢失并保留视觉功能。机制上,IAA通过AhR依赖性信号传导减弱晚期糖基化终末产物受体(RAGE)/核因子κB(NF-κB)途径激活,从而发挥神经保护作用。
我们的研究提出了一种在青光眼发病机制中由AhR介导的新型肠道微生物群-眼轴,并证明IAA作为一种有效的神经保护策略,在管理RGC神经变性方面具有临床潜力。