Suppr超能文献

一种基于NaV(PO)@C阴极和铋纳米线阳极的高压镁离子电池。

A High Voltage Magnesium Ion Battery Based on NaV(PO)@C Cathode and Bi Nanowire Anode.

作者信息

Yang Jingdong, Liu Yunxia, Ye Junliu, Wen Jiaxin, Wang Jinxing, Huang Guangsheng, Wang Jingfeng

机构信息

Chongqing Industry Polytechnic College, Chongqing 401120, P. R. China.

School of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.

出版信息

Langmuir. 2025 Jul 22;41(28):18919-18928. doi: 10.1021/acs.langmuir.5c02864. Epub 2025 Jul 10.

Abstract

With the growing demand for green energy storage, magnesium batteries have emerged as a promising technology due to their low cost and superior theoretical capacity. This study optimizes the magnesium storage performance of NaV(PO) and Bi through two strategies: uniform carbon coating and nanostructural design, respectively. Building on this, a full magnesium battery was constructed using NaV(PO)@C as the high-voltage cathode material and Bi nanowires as the anode, with Mg(TFSI)/AN electrolyte, and its electrochemical performance was thoroughly investigated. Electrochemical tests reveal that the full cell exhibits a high-voltage reaction plateau at 2.7 V/2.2 V. The initial discharge capacity of the full cell is 76 mAh/g, which maintains 62 mAh/g after 100 cycles, corresponding to a capacity retention of 82%, indicating outstanding cycling stability. Furthermore, at a high rate of 500 mA/g, the magnesium battery retains a discharge capacity of approximately 45 mAh/g, showcasing its excellent rate capability. This study provides insights for the realization of high-voltage, high-capacity, and long-cycle stability in magnesium batteries, advancing the technology toward higher energy densities and extended service lifetimes.

摘要

随着对绿色储能需求的不断增长,镁电池因其低成本和优异的理论容量而成为一种很有前景的技术。本研究分别通过均匀碳包覆和纳米结构设计两种策略优化了NaV(PO)和Bi的储镁性能。在此基础上,以NaV(PO)@C为高压正极材料、Bi纳米线为负极,Mg(TFSI)/AN为电解质构建了全镁电池,并对其电化学性能进行了深入研究。电化学测试表明,该全电池在2.7 V/2.2 V处呈现出高电压反应平台。全电池的初始放电容量为76 mAh/g,100次循环后保持在62 mAh/g,容量保持率为82%,显示出出色的循环稳定性。此外,在500 mA/g的高电流密度下,镁电池仍保持约45 mAh/g的放电容量,展现出优异的倍率性能。本研究为实现镁电池的高电压、高容量和长循环稳定性提供了见解,推动该技术向更高能量密度和更长使用寿命发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验