Suppr超能文献

使用注意力深度多视图网络的可解释自动癫痫发作检测

Explainable Automated Seizure Detection using Attentive Deep Multi-View Networks.

作者信息

Einizade Aref, Nasiri Samaneh, Mozafari Mohsen, Sardouie Sepideh Hajipour, Clifford Gari D

机构信息

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.

Massachusetts General Hospital, Harvard Medical School, MA, USA.

出版信息

Biomed Signal Process Control. 2023 Jan;79(Pt 1). doi: 10.1016/j.bspc.2022.104076. Epub 2022 Aug 31.

Abstract

Manual inspection of Electroencephalography (EEG) signals to detect epileptic seizures is time-consuming and prone to inter-rater variability. Moreover, EEG signals are contaminated with different noise sources, e.g., patient movement during seizures, making the accurate identification of seizure activities challenging. In a Multi-View seizure detection system, since seizures do not uniformly affect the brain, some views likely play a more significant role in detecting seizures and should therefore be assigned a higher weight in the concatenation step. To address this dynamic weight assignment issue and also create a more interpretable model, in this work, we propose a fusion attentive deep multi-view network (fAttNet). The fAttNet combines temporal multi-channel EEG signals, wavelet packet decomposition (WPD), and hand-engineered features as three key views. We also propose an artifact rejection approach to remove unwanted signals not originating from the brain. Experimental results on the Temple University Hospital (TUH) seizure database demonstrate that the proposed method has increased performance over the state-of-the-art methods, raising accuracy, and F1-score from 0.82 to 0.86, and 0.78 to 0.81, respectively. More importantly, the proposed method is interpretable for medical professionals, assisting clinicians in identifying the regions of the brain involved in the seizures.

摘要

通过人工检查脑电图(EEG)信号来检测癫痫发作既耗时又容易出现评分者间的差异。此外,EEG信号会受到不同噪声源的污染,例如癫痫发作期间患者的移动,这使得准确识别癫痫活动具有挑战性。在多视图癫痫检测系统中,由于癫痫发作并非均匀地影响大脑,某些视图在检测癫痫发作时可能发挥更重要的作用,因此在拼接步骤中应赋予更高的权重。为了解决这种动态权重分配问题并创建一个更具可解释性的模型,在这项工作中,我们提出了一种融合注意力深度多视图网络(fAttNet)。fAttNet将时间多通道EEG信号、小波包分解(WPD)和手工设计的特征作为三个关键视图。我们还提出了一种伪迹去除方法,以去除并非源自大脑的不需要的信号。在坦普尔大学医院(TUH)癫痫数据库上的实验结果表明,所提出的方法比现有方法具有更高的性能,准确率和F1分数分别从0.82提高到0.86,从0.78提高到0.81。更重要的是,所提出的方法对医学专业人员具有可解释性,有助于临床医生识别癫痫发作所涉及的大脑区域。

相似文献

1
Explainable Automated Seizure Detection using Attentive Deep Multi-View Networks.
Biomed Signal Process Control. 2023 Jan;79(Pt 1). doi: 10.1016/j.bspc.2022.104076. Epub 2022 Aug 31.
5
Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review.
Cochrane Database Syst Rev. 2017 Feb 27;2(2):CD001911. doi: 10.1002/14651858.CD001911.pub3.
6
Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review.
Cochrane Database Syst Rev. 2015 Aug 14(8):CD001911. doi: 10.1002/14651858.CD001911.pub2.
7
Prognosis of adults and children following a first unprovoked seizure.
Cochrane Database Syst Rev. 2023 Jan 23;1(1):CD013847. doi: 10.1002/14651858.CD013847.pub2.
8
Carbamazepine versus phenobarbitone monotherapy for epilepsy: an individual participant data review.
Cochrane Database Syst Rev. 2016 Dec 15;12(12):CD001904. doi: 10.1002/14651858.CD001904.pub3.
9
Lamotrigine versus carbamazepine monotherapy for epilepsy: an individual participant data review.
Cochrane Database Syst Rev. 2016 Nov 14;11(11):CD001031. doi: 10.1002/14651858.CD001031.pub3.
10
Treatments for seizures in catamenial (menstrual-related) epilepsy.
Cochrane Database Syst Rev. 2021 Sep 16;9(9):CD013225. doi: 10.1002/14651858.CD013225.pub3.

本文引用的文献

1
Heterogeneous Network Representation Learning: A Unified Framework with Survey and Benchmark.
IEEE Trans Knowl Data Eng. 2022 Oct;34(10):4854-4873. doi: 10.1109/tkde.2020.3045924. Epub 2020 Dec 21.
2
Geometric Deep Learning for Subject Independent Epileptic Seizure Prediction Using Scalp EEG Signals.
IEEE J Biomed Health Inform. 2022 Feb;26(2):527-538. doi: 10.1109/JBHI.2021.3100297. Epub 2022 Feb 4.
3
A review of epileptic seizure detection using machine learning classifiers.
Brain Inform. 2020 May 25;7(1):5. doi: 10.1186/s40708-020-00105-1.
4
EEG based multi-class seizure type classification using convolutional neural network and transfer learning.
Neural Netw. 2020 Apr;124:202-212. doi: 10.1016/j.neunet.2020.01.017. Epub 2020 Jan 25.
5
Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection.
IEEE Trans Neural Syst Rehabil Eng. 2019 Oct;27(10):1962-1972. doi: 10.1109/TNSRE.2019.2940485. Epub 2019 Sep 11.
6
Epileptic Seizure Detection with EEG Textural Features and Imbalanced Classification Based on EasyEnsemble Learning.
Int J Neural Syst. 2019 Dec;29(10):1950021. doi: 10.1142/S0129065719500217. Epub 2019 Jul 29.
7
FusionAtt: Deep Fusional Attention Networks for Multi-Channel Biomedical Signals.
Sensors (Basel). 2019 May 28;19(11):2429. doi: 10.3390/s19112429.
8
Removal of Artifacts from EEG Signals: A Review.
Sensors (Basel). 2019 Feb 26;19(5):987. doi: 10.3390/s19050987.
9
Deep learning for electroencephalogram (EEG) classification tasks: a review.
J Neural Eng. 2019 Jun;16(3):031001. doi: 10.1088/1741-2552/ab0ab5. Epub 2019 Feb 26.
10
EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
J Neural Eng. 2018 Oct;15(5):056013. doi: 10.1088/1741-2552/aace8c. Epub 2018 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验