Siddiqui Mohammad Khubeb, Morales-Menendez Ruben, Huang Xiaodi, Hussain Nasir
School of Engineering and Sciences, Tecnologico de Monterrey, Av. E. Garza Sada 2501, Monterrey, Nuevo Leon, Mexico.
School of Computing and Mathematics, Charles Sturt University, 2640, Albury, NSW, Australia.
Brain Inform. 2020 May 25;7(1):5. doi: 10.1186/s40708-020-00105-1.
Epilepsy is a serious chronic neurological disorder, can be detected by analyzing the brain signals produced by brain neurons. Neurons are connected to each other in a complex way to communicate with human organs and generate signals. The monitoring of these brain signals is commonly done using Electroencephalogram (EEG) and Electrocorticography (ECoG) media. These signals are complex, noisy, non-linear, non-stationary and produce a high volume of data. Hence, the detection of seizures and discovery of the brain-related knowledge is a challenging task. Machine learning classifiers are able to classify EEG data and detect seizures along with revealing relevant sensible patterns without compromising performance. As such, various researchers have developed number of approaches to seizure detection using machine learning classifiers and statistical features. The main challenges are selecting appropriate classifiers and features. The aim of this paper is to present an overview of the wide varieties of these techniques over the last few years based on the taxonomy of statistical features and machine learning classifiers-'black-box' and 'non-black-box'. The presented state-of-the-art methods and ideas will give a detailed understanding about seizure detection and classification, and research directions in the future.
癫痫是一种严重的慢性神经疾病,可通过分析大脑神经元产生的脑信号来检测。神经元以复杂的方式相互连接,与人体器官进行通信并产生信号。对这些脑信号的监测通常使用脑电图(EEG)和皮质脑电图(ECoG)媒介来完成。这些信号复杂、有噪声、非线性、非平稳且产生大量数据。因此,癫痫发作的检测以及与大脑相关知识的发现是一项具有挑战性的任务。机器学习分类器能够对脑电图数据进行分类,检测癫痫发作,并揭示相关的有意义模式,同时不影响性能。因此,众多研究人员已经开发了许多使用机器学习分类器和统计特征来进行癫痫发作检测的方法。主要挑战在于选择合适的分类器和特征。本文的目的是基于统计特征和机器学习分类器(“黑箱”和“非黑箱”)的分类法,对过去几年中这些技术的广泛种类进行概述。所呈现的最新方法和思路将使人们对癫痫发作的检测和分类以及未来的研究方向有详细的了解。