Suppr超能文献

基于 EasyEnsemble 学习的 EEG 纹理特征与不平衡分类的癫痫发作检测。

Epileptic Seizure Detection with EEG Textural Features and Imbalanced Classification Based on EasyEnsemble Learning.

机构信息

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China.

Department of Computer Science and Information Technology, La Trobe University, Bundoora, VIC 3083, Australia.

出版信息

Int J Neural Syst. 2019 Dec;29(10):1950021. doi: 10.1142/S0129065719500217. Epub 2019 Jul 29.

Abstract

Imbalance data classification is a challenging task in automatic seizure detection from electroencephalogram (EEG) recordings when the durations of non-seizure periods are much longer than those of seizure activities. An imbalanced learning model is proposed in this paper to improve the identification of seizure events in long-term EEG signals. To better represent the underlying microstructure distributions of EEG signals while preserving the non-stationary nature, discrete wavelet transform (DWT) and uniform 1D-LBP feature extraction procedure are introduced. A learning framework is then designed by the ensemble of weakly trained support vector machines (SVMs). Under-sampling is employed to split the imbalanced seizure and non-seizure samples into multiple balanced subsets where each of them is utilized to train an individual SVM classifier. The weak SVMs are incorporated to build a strong classifier which emphasizes seizure samples and in the meantime analyzing the imbalanced class distribution of EEG data. Final seizure detection results are obtained in a multi-level decision fusion process by considering temporal and frequency factors. The model was validated over two long-term and one short-term public EEG databases. The model achieved a -mean of 97.14% with respect to epoch-level assessment, an event-level sensitivity of 96.67%, and a false detection rate of 0.86/h on the long-term intracranial database. An epoch-level -mean of 95.28% and event-level false detection rate of 0.81/h were yielded over the long-term scalp database. The comparisons with 14 published methods demonstrated the improved detection performance for imbalanced EEG signals and the generalizability of the proposed model.

摘要

不平衡数据分类是自动从脑电图(EEG)记录中检测癫痫发作的一项具有挑战性的任务,尤其是在非癫痫发作期间的持续时间比癫痫发作活动的持续时间长得多时。本文提出了一种不平衡学习模型,以提高长期 EEG 信号中癫痫事件的识别能力。为了更好地表示 EEG 信号的潜在微观结构分布,同时保留非平稳性,引入了离散小波变换(DWT)和均匀 1D-LBP 特征提取过程。然后通过集成弱训练支持向量机(SVM)设计学习框架。采用欠采样将不平衡的癫痫发作和非癫痫发作样本分割成多个平衡子集,每个子集都用于训练单个 SVM 分类器。弱 SVM 被合并到一个强分类器中,该分类器强调癫痫发作样本,并同时分析 EEG 数据的不平衡类别分布。通过考虑时间和频率因素,在多层次决策融合过程中获得最终的癫痫发作检测结果。该模型在两个长期和一个短期公共 EEG 数据库上进行了验证。在长期颅内数据库中,该模型在基于epoch 的评估中达到了 97.14%的 -mean,事件级灵敏度为 96.67%,假阳性率为 0.86/h。在长期头皮数据库中,达到了 epoch-level -mean 为 95.28%和事件级假阳性率为 0.81/h。与 14 种已发表方法的比较表明,该模型对不平衡 EEG 信号的检测性能有所提高,具有通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验