Suppr超能文献

Nuclear proteins damage by alkylating agents with different degrees of carcinogenicity.

作者信息

Boffa L C, Bolognesi C

出版信息

Chem Biol Interact. 1985 Oct;55(1-2):235-45. doi: 10.1016/s0009-2797(85)80131-9.

Abstract

We have tried to establish a correlation between the carcinogenic potency of two alkylating compounds and specific target sites in chromatin. We have therefore compared the nuclear metabolism of radioactively-labelled methylmethanesulfonate (MMS), a relatively weak carcinogen and N-methylnitrosourea (MNU), a highly potent carcinogen in cultured primary hepatocytes which have, high microsomal drug-metabolizing activity and in V79 Chinese hamster cells which have low microsomal enzymatic activity. The modification of specific amino acid residues in acid-soluble nuclear proteins (H) and non-histone nuclear proteins (NH) was studied after exposing the cells to various doses of alkylating agents overnight. We found that at all doses, mainly the cysteine (Cys), but also to a lower extent the histidine (His) residues are methylated in both H and NH protein fractions by MMS. At high doses of MMS, traces of methylarginine and methylated lysines could be detected. MNU predominantly methylates lysine and arginine residues, the former being found mostly in H, the latter in NH. Although both hepatocytes and V79 cells metabolized radioactively-labelled carcinogen, a higher percentage of counts were incorporated by the hepatocytes; 'unusually' methylated amino acids were detectable in the hepatocyte proteins with relatively low doses of the alkylating agents but not in V79 cells. In the presence of exogenous microsomes, during exposure of V79 cells to the alkylating agents, the amount of amino acid methylation is qualitatively and quantitatively similar to that found in hepatocytes. Our data suggest a specific mechanism of protein methylation, at the level of target amino acids, for carcinogens with different potencies similar to what has been found for DNA bases. A component of the microsomal fraction (S9) may be able to enhance this effect.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验