Zou Yujing, Glickman Harry, Pelmus Manuela, Maleki Farhad, Bahoric Boris, Lecavalier-Barsoum Magali, Enger Shirin A
Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada.
Montreal Institute for Learning Algorithms - Quebec AI Institute, Montreal, Canada.
Phys Imaging Radiat Oncol. 2025 Jun 19;35:100793. doi: 10.1016/j.phro.2025.100793. eCollection 2025 Jul.
Radiotherapy targets DNA in cancer cell nuclei. Radiation dose, however, is prescribed to a macroscopic target volume assuming uniform distribution, failing to consider microscopic variations in dose absorbed by individual nuclei. This study investigated a potential link between pre-treatment tumour nuclear size distributions and post-radiotherapy outcomes in gynecological squamous cell carcinoma (SCC).
Our multi-institutional cohort consisted of 191 non-metastatic gynecological SCC patients who had received radiotherapy with diagnostic whole slide images (WSIs) available. Tumour nuclear size distribution mean and standard deviation were extracted from WSIs using deep learning, and used to predict progression-free interval (PFI) and overall survival (OS) in multivariate Cox proportional hazards (CoxPH) analysis adjusted for age and clinical stage.
Multivariate CoxPH analysis revealed that a larger nuclear size distribution mean results in more favorable outcomes for PFI (HR = 0.45, 95% CI: 0.19 - 1.09, p = 0.084) and OS (HR = 0.55, 95% CI: 0.24 - 1.25, p = 0.16), and that a larger nuclear size standard deviation results in less favorable outcomes for PFI (HR = 7.52, 95% CI: 1.43 - 39.52, p = 0.023) and OS (HR = 4.67, 95% CI: 0.96 - 22.57, p = 0.063). The bootstrap-validated C-statistic was 0.56 for PFI and 0.57 for OS.
Despite low accuracy, tumour nuclear size heterogeneity aided prognostication over standard clinical variables and was associated with outcomes following radiotherapy in gynecological SCC. This highlights the potential importance of personalized multiscale dosimetry and warrants further large-scale pan-cancer studies.
放射治疗的靶点是癌细胞核中的DNA。然而,放射剂量是根据宏观靶区体积来规定的,假定剂量分布均匀,而未考虑单个细胞核吸收剂量的微观差异。本研究调查了妇科鳞状细胞癌(SCC)治疗前肿瘤细胞核大小分布与放射治疗后结果之间的潜在联系。
我们的多机构队列由191例接受过放射治疗且有诊断性全切片图像(WSIs)的非转移性妇科SCC患者组成。使用深度学习从WSIs中提取肿瘤细胞核大小分布的均值和标准差,并在针对年龄和临床分期进行调整的多变量Cox比例风险(CoxPH)分析中用于预测无进展生存期(PFI)和总生存期(OS)。
多变量CoxPH分析显示,较大的细胞核大小分布均值对PFI(风险比[HR]=0.45,95%置信区间[CI]:0.19 - 1.09,p = 0.084)和OS(HR = 0.55,95% CI:0.24 - 1.25,p = 0.16)产生更有利的结果,而较大的细胞核大小标准差对PFI(HR = 7.52,95% CI:1.43 - 39.52,p = 0.023)和OS(HR = 4.67,95% CI:0.96 - 22.57,p = 0.063)产生不太有利的结果。经自举验证的C统计量对于PFI为0.56,对于OS为0.57。
尽管准确性较低,但肿瘤细胞核大小异质性在预测预后方面优于标准临床变量,并且与妇科SCC放射治疗后的结果相关。这凸显了个性化多尺度剂量测定的潜在重要性,并值得进一步开展大规模泛癌研究。