Abramian Sophie, Muller Caroline, Risi Camille, Fiolleau Thomas, Roca Rémy
Laboratoire de Météorologie Dynamique, IPSL, CNRS, Ecole Normale Supérieure, Sorbonne Université, PSL Research University, Paris, France.
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
NPJ Clim Atmos Sci. 2025;8(1):258. doi: 10.1038/s41612-025-01154-1. Epub 2025 Jul 8.
Deep Convective Systems (DCSs) reaching scales of 100-1000 km play a pivotal role as the primary precipitation source in the tropics. Those systems can have large cloud shields, and thus not only affect severe precipitation patterns but also play a crucial part in modulating the tropical radiation budget. Understanding the complex factors that control how these systems grow and how they will behave in a warming climate remain fundamental challenges. Research efforts have been directed, on one hand, towards understanding the environmental control on these systems, and on the other hand, towards exploring the internal potential of systems to develop and self-aggregate in idealized simulations. However, we still lack understanding on the relative role of the environment and internal feedbacks on DCS mature size and why. The novel high-resolution global SAM simulation from the DYAMOND project, combined with the TOOCAN Lagrangian tracking of DCSs and machine learning tools, offers an unprecedented opportunity to explore this question. We find that a system's growth rate during the first 2 h of development predicts its final size with a Pearson correlation coefficient of 0.65. Beyond this period, growth rate emerges as the strongest predictor. However, in the early stages, additional factors-such as ice water path heterogeneity, migration distance, interactions with neighboring systems, and deep shear-play a more significant role. Our study quantitatively assesses the relative influence of internal versus external factors on the mature cloud shield size. Our results show that system-intrinsic properties exert a stronger influence than environmental conditions, suggesting that the initial environment does not strictly constrain final system size, particularly for larger systems where internal dynamics dominate.
尺度达到100 - 1000千米的深厚对流系统(DCSs)作为热带地区主要的降水来源发挥着关键作用。这些系统可能具有巨大的云区,因此不仅影响强降水模式,还在调节热带辐射收支方面起着至关重要的作用。了解控制这些系统如何发展以及它们在气候变暖情况下行为的复杂因素仍然是根本性的挑战。一方面,研究工作致力于理解环境对这些系统的控制,另一方面,致力于在理想化模拟中探索系统自身发展和自我聚集的潜力。然而,我们仍然缺乏对环境和内部反馈在DCS成熟尺度方面的相对作用以及原因的理解。DYAMOND项目新颖的高分辨率全球SAM模拟,结合DCSs的TOOCAN拉格朗日追踪和机器学习工具,提供了一个前所未有的机会来探索这个问题。我们发现,一个系统在发展的前2小时内的增长率,以皮尔逊相关系数0.65预测其最终尺度。在此之后,增长率成为最强的预测因子。然而,在早期阶段,诸如冰水路径不均匀性、移动距离、与相邻系统的相互作用以及深厚切变等其他因素发挥着更重要的作用。我们的研究定量评估了内部因素与外部因素对成熟云区尺度的相对影响。我们的结果表明,系统内在属性比环境条件的影响更强,这表明初始环境并不严格限制最终系统尺度,特别是对于内部动力学占主导的较大系统。