Suppr超能文献

用于芯片上的肌肉骨骼类器官揭示间歇性缺氧下的肌肉-骨骼通讯

Musculoskeletal organoids-on-chip uncover muscle-bone communication under intermittent hypoxia.

作者信息

Tong Xianqin, Liu Minchao, Li Jiao, Zhang Weihua, Hu Rong, Yang Gang, Deng Jiajia, Li Yuanyuan, Li Xiaomin, Liu Yuehua

机构信息

Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 201100, China.

Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 201100, China.

出版信息

Natl Sci Rev. 2025 May 27;12(7):nwaf214. doi: 10.1093/nsr/nwaf214. eCollection 2025 Jul.

Abstract

Muscle and bone have intimate biochemical associations spatiotemporally. Yet, the muscle-bone dynamic alterations under intermittent hypoxia (IH) remain unclear, primarily due to the lack of suitable microphysiological models. Herein, we developed a novel musculoskeletal organoids-on-chip (MSK OoC), advancing an integrated study of muscle-bone biochemical communication and personalized interventional strategies. Within this MSK OoC, muscle organoids (MOs) replicate micro-architecture, while bone organoids mimic both the formation and remodeling processes. Utilizing MSK OoC, we discovered that IH-induced muscle pathology suppressed osteogenesis but stimulated osteoclastogenesis. The mitochondria protein Sirt3 in muscle played a pivotal role in regulating bone metabolism via myokine Cxcl5. Besides, mitochondria-targeting sequence-mediated Sirt3 overexpression in MOs effectively reversed bone deterioration. To validate mitochondria-targeted therapeutics, a Janus silica nano-vehicle was adopted to deliver resveratrol upon MSK OoC, effectively rescuing the pathological muscle-bone dysfunction. This study highlights the potential of the MSK OoC platform for investigating interorgan communication and developing precise nanomedicine therapies.

摘要

肌肉和骨骼在时空上有着密切的生化联系。然而,间歇性缺氧(IH)下肌肉与骨骼的动态变化仍不清楚,这主要是由于缺乏合适的微生理模型。在此,我们开发了一种新型的肌肉骨骼类器官芯片(MSK OoC),推动了对肌肉-骨骼生化通讯和个性化干预策略的综合研究。在这个MSK OoC中,肌肉类器官(MOs)复制微观结构,而骨类器官则模拟形成和重塑过程。利用MSK OoC,我们发现IH诱导的肌肉病变抑制了成骨作用,但刺激了破骨细胞生成。肌肉中的线粒体蛋白Sirt3通过肌动蛋白Cxcl5在调节骨代谢中起关键作用。此外,线粒体靶向序列介导的MOs中Sirt3过表达有效逆转了骨退化。为了验证线粒体靶向治疗,采用了一种Janus二氧化硅纳米载体在MSK OoC上递送白藜芦醇,有效挽救了病理性肌肉-骨骼功能障碍。这项研究突出了MSK OoC平台在研究器官间通讯和开发精确纳米医学疗法方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cae5/12243851/220a76f78c6a/nwaf214fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验