Jongrungrotbaworn Thanayuth, Nganglumpoon Rungkiat, Watmanee Suthasinee, Tungasmita Sukkaneste, Sakamoto Ryota, Panpranot Joongjai
MSc. Program in Research for Enterprise, Faculty of Pharmaceutical Sciences, Chulalongkorn University Thailand.
CrystalLyte Co., Ltd, Research Unit 904, Faculty of Engineering, Chulalongkorn University Bangkok 10330 Thailand
RSC Adv. 2025 Jul 10;15(29):24040-24052. doi: 10.1039/d5ra03471j. eCollection 2025 Jul 4.
Conventional bottom-up synthesis of graphitic carbon quantum dots (g-CQDs) often requires extended reaction times, high energy input, and specialized equipment, limiting scalability and sustainability. In this study, we present an eco-friendly and energy-efficient method for synthesizing g-CQDs using HCO as a carbon precursor at just 72 °C for 1 hour-representing one of the lowest reported synthesis temperatures and shortest reaction times using simple apparatus. Graphene oxide vacancies act as catalytic and nucleation sites, promoting the formation of g-CQDs under these mild conditions. The resulting g-CQD solution exhibits strong yellow photoluminescence, with a maximum emission at 533 nm and excitation-independence across the 320-410 nm range. Upon drying, the g-CQDs spontaneously assemble into a three-dimensional (3D) network, which provides additional functionality when incorporated into g-CQD/graphene nanoplatelet epoxy composites. This strategy not only promotes the sustainable production of g-CQDs but also broadens their potential for use in next-generation nanomaterials and optoelectronic devices.
传统的自上而下合成石墨碳量子点(g-CQDs)通常需要延长反应时间、高能量输入和专门的设备,这限制了其可扩展性和可持续性。在本研究中,我们提出了一种环保且节能的方法,使用HCO作为碳前驱体,仅在72°C下反应1小时即可合成g-CQDs,这是使用简单设备所报道的最低合成温度和最短反应时间之一。氧化石墨烯空位充当催化和成核位点,在这些温和条件下促进g-CQDs的形成。所得的g-CQD溶液呈现出强烈的黄色光致发光,在533nm处有最大发射,并且在320-410nm范围内与激发无关。干燥后,g-CQDs自发组装成三维(3D)网络,当将其掺入g-CQD/石墨烯纳米片环氧复合材料中时可提供额外的功能。这种策略不仅促进了g-CQDs的可持续生产,还拓宽了它们在下一代纳米材料和光电器件中的应用潜力。