Villada Yurany, Giraldo Lady J, Estenoz Diana, Riazi Masoud, Ordoñez Juan, Taborda Esteban A, Bastidas Marlon, Franco Camilo A, Cortés Farid B
Grupo de Investigación Fenómenos de Superficie Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia.
Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Güemes 3450, Santa Fe 3000, Argentina.
Nanomaterials (Basel). 2025 Jun 7;15(12):879. doi: 10.3390/nano15120879.
The main objective of this study is to improve heat transfer in hydrocarbon- and geothermal-energy coproduction systems using carbon quantum dots (CQDs). Two types of 0D nanoparticles (synthesized and commercial CQDs) were used for the formulation of nanofluids to increase the heat transfer from depleted wells for the coproduction of oil and electrical energy. The synthesized and commercial CQDs were characterized in terms of their morphology, zeta potential, density, size, and heat capacity. The nanofluids were prepared using brine from an oil well of interest and two types of CQDs. The effect of the CQDs on the thermophysical properties of the nanofluids was evaluated based on their thermal conductivity. In addition, a mathematical model based on heat transfer principles to predict the effect of nanofluids on the efficiency of the organic Rankine cycle (ORC) was implemented. The synthesized and commercial CQDs had particle sizes of 25 and 16 nm, respectively. Similarly, zeta potential values of 36 and 48 mV were obtained. Both CQDs have similar functional groups and UV absorption, and the fluorescence spectra show that the study CQDs have a maximum excitation-emission signal around 360-460 nm. The characterization of the nanofluids showed that the addition of 100, 300, and 500 mg/L of CQDs increased the thermal conductivity by 40, 50, and 60 %, respectively. However, the 1000 mg/L incorporated decreased the thermal conductivities of the nanofluids. The observed behavior can be attributed to the aggregate size of the nanoparticles. Furthermore, a new thermal conductivity model for CQD-based nanofluids was developed considering brine salinity, particle size distribution, and agglomeration effects. The model showed a remarkable fit with the experimental data and predicted the effect of the nanofluid concentration on the thermal conductivity and cycle efficiency. Coupled with an ORC cycle model, CQD concentrations of approximately 550 mg/L increased the cycle efficiency by approximately 13.8% and 18.6% for commercial and synthesized CQDs, respectively.
本研究的主要目标是利用碳量子点(CQDs)改善碳氢化合物与地热能联产系统中的热传递。两种类型的零维纳米颗粒(合成碳量子点和商业碳量子点)被用于制备纳米流体,以增强来自枯竭油井的热传递,从而实现石油和电能的联产。对合成碳量子点和商业碳量子点的形态、zeta电位、密度、尺寸和热容量进行了表征。纳米流体是使用感兴趣油井的盐水和两种类型的碳量子点制备的。基于其热导率评估了碳量子点对纳米流体热物理性质的影响。此外,实施了一个基于热传递原理的数学模型,以预测纳米流体对有机朗肯循环(ORC)效率的影响。合成碳量子点和商业碳量子点的粒径分别为25纳米和16纳米。同样,获得的zeta电位值分别为36毫伏和48毫伏。两种碳量子点具有相似的官能团和紫外吸收,并且荧光光谱表明所研究的碳量子点在360 - 460纳米左右具有最大激发 - 发射信号。纳米流体的表征表明,添加100、300和500毫克/升的碳量子点分别使热导率提高了40%、50%和60%。然而,加入1000毫克/升会降低纳米流体的热导率。观察到的这种行为可归因于纳米颗粒的聚集体尺寸。此外,考虑盐水盐度、粒径分布和团聚效应,开发了一种基于碳量子点的纳米流体的新热导率模型。该模型与实验数据显示出显著的拟合,并预测了纳米流体浓度对热导率和循环效率的影响。与有机朗肯循环模型相结合,对于商业碳量子点和合成碳量子点,大约550毫克/升的碳量子点浓度分别使循环效率提高了约13.8%和18.6%。