Suppr超能文献

SBC-SHAP:提高用于脓毒症预测的机器学习算法的可及性和可解释性。

SBC-SHAP: Increasing the Accessibility and Interpretability of Machine Learning Algorithms for Sepsis Prediction.

作者信息

Walke Daniel, Steinbach Daniel, Kaiser Thorsten, Schönhuth Alexander, Saake Gunter, Broneske David, Heyer Robert

机构信息

Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany.

Database and Software Engineering Group, Otto von Guericke University, Magdeburg, Germany.

出版信息

J Appl Lab Med. 2025 Sep 3;10(5):1226-1240. doi: 10.1093/jalm/jfaf091.

Abstract

BACKGROUND

Sepsis is a life-threatening condition that is one of the major causes of death worldwide. Early detection of sepsis is required for fast initialization of an appropriate therapy. Complete blood count data containing information about white blood cells, platelets, hemoglobin, red blood cells, and mean corpuscular volume could serve as early indicators. However, previous approaches are limited by their interpretability (i.e., investigating the influence of feature values on individual predictions) and accessibility (i.e., easy accessibility for clinicians without programming expertise).

METHODS

We developed a graph-based approach for training machine learning (ML) algorithms to incorporate time-series information for prediction based on complete blood count data. Additionally, we investigated the effect of integrating different ratios to a healthy reference measurement to improve the performance of the previously published ML model. Finally, we developed a web application based on our approaches to increase accessibility.

RESULTS

While it was irrelevant how exactly the ratio was formed, our approach increased the sensitivity at 80% specificity across all ML models from up to 78.2% to up to 82.9% on an internal dataset (i.e., same tertiary care center) and from 65.4% to 73.4% on an external dataset (i.e., independent tertiary care center) for prospective time-series analysis. Additionally, we propose SBC-SHAP (https://mdoa-tools.bi.denbi.de/sbc-shap), a web application that visualizes the sepsis risks and individual interpretations of several ML classifiers.

CONCLUSIONS

We are confident that this tool will increase the interpretability and accessibility of ML models for predicting sepsis based on complete blood count data. SBC-SHAP is open-sourced on https://github.com/danielwalke/sbc_app.

摘要

背景

脓毒症是一种危及生命的病症,是全球主要死因之一。早期发现脓毒症对于迅速启动适当治疗至关重要。包含白细胞、血小板、血红蛋白、红细胞和平均红细胞体积信息的全血细胞计数数据可作为早期指标。然而,先前的方法在可解释性(即研究特征值对个体预测的影响)和可及性(即临床医生无需编程专业知识即可轻松获取)方面存在局限性。

方法

我们开发了一种基于图的方法来训练机器学习(ML)算法,以纳入基于全血细胞计数数据进行预测的时间序列信息。此外,我们研究了将不同比率整合到健康参考测量中的效果,以提高先前发布的ML模型的性能。最后,我们基于我们的方法开发了一个网络应用程序,以提高可及性。

结果

虽然比率的确切形成方式无关紧要,但我们的方法在内部数据集(即同一三级护理中心)上,将所有ML模型在80%特异性下的敏感性从高达78.2%提高到高达82.9%,在外部数据集(即独立三级护理中心)上,对于前瞻性时间序列分析,从65.4%提高到73.4%。此外,我们提出了SBC-SHAP(https://mdoa-tools.bi.denbi.de/sbc-shap),这是一个网络应用程序,可直观显示几种ML分类器的脓毒症风险和个体解释。

结论

我们相信,该工具将提高基于全血细胞计数数据预测脓毒症的ML模型的可解释性和可及性。SBC-SHAP在https://github.com/danielwalke/sbc_app上开源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验