Suppr超能文献

集成深度学习用于手语识别的自组装MXene/PDA@棉织物压力传感器

Self-Assembly MXene/PDA@Cotton Fabric Pressure Sensor Integrated with Deep Learning for Sign Language Recognition.

作者信息

Yang Chunqing, Zhang Dongzhi, Wang Weiwei, Wang Jun, Liu Yukun, Zhou Lina, Guo Yihong, Shao Jiahui

机构信息

State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.

College of Electronic Science and Technology, Hainan University, Haikou 570228, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 23;17(29):42321-42330. doi: 10.1021/acsami.5c08568. Epub 2025 Jul 11.

Abstract

In recent years, smart textiles and flexible wearable products have garnered significant attention in fields such as human-computer interaction, medical rehabilitation training, and motion monitoring. Flexible pressure sensors have attracted significant attention due to their excellent flexibility, stability, and multifunctional integration. Herein, a multifunctional wearable MXene/polydopamine (PDA)@cotton fabric pressure sensor was developed by modifying weft-knitted cotton fabric based on a dual hydrogen bond self-assembly strategy. The MXene/PDA@cotton fabric pressure sensor demonstrates wide linear detection range (0-146 kPa), high sensitivity (0.95 kPa), fast response/recovery times (16.434 and 11.952 ms), and outstanding stability after over 5000 cyclic tests. This sensor can achieve the monitoring of physiological parameters for human state detection, such as facial expression signals, abdominal respiratory signals, and joint bending signals. Furthermore, by integrating the MXene/PDA sensors into the interphalangeal and metacarpophalangeal joints of a cotton glove, combined with intelligent algorithms and the human-computer interaction system, static gesture recognition and dynamic sign language translation were successfully realized based on the smart glove. This work demonstrates the potential application of flexible pressure sensors in intelligent human-computer interaction, providing new insights for developing next-generation sign language recognition systems.

摘要

近年来,智能纺织品和柔性可穿戴产品在人机交互、医学康复训练和运动监测等领域受到了广泛关注。柔性压力传感器因其出色的柔韧性、稳定性和多功能集成性而备受瞩目。在此,基于双氢键自组装策略对纬编棉织物进行改性,开发了一种多功能可穿戴的MXene/聚多巴胺(PDA)@棉织物压力传感器。MXene/PDA@棉织物压力传感器具有宽线性检测范围(0-146 kPa)、高灵敏度(0.95 kPa)、快速响应/恢复时间(16.434和11.952 ms),并且在超过5000次循环测试后仍具有出色的稳定性。该传感器可实现对人体状态检测生理参数的监测,如面部表情信号、腹部呼吸信号和关节弯曲信号。此外,通过将MXene/PDA传感器集成到棉手套的指间和掌指关节中,结合智能算法和人机交互系统,基于智能手套成功实现了静态手势识别和动态手语翻译。这项工作展示了柔性压力传感器在智能人机交互中的潜在应用,为开发下一代手语识别系统提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验