Suppr超能文献

原子级分散的镨修饰镍活性位点促进光热一氧化碳转化中碳酸盐中间体的直接裂解

Atomically Dispersed Praseodymium-Modified Ni Active Sites Boost the Direct Cleavage of Carbonate Intermediates for Photothermal CO Conversion.

作者信息

Rao Zhiqiang, Huang Zeai, Chen Guoxing, Zhang Liangzhu, Wang Kaiwen, Cao Yuehan, Chen Yaolin, Yang Yuantao, Feng Qianyue, Weidenkaff Anke, Zhou Ying

机构信息

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China.

School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China.

出版信息

ACS Nano. 2025 Jul 22;19(28):25904-25916. doi: 10.1021/acsnano.5c05699. Epub 2025 Jul 11.

Abstract

Photothermal catalytic reduction of carbon dioxide (CO) into valuable chemical feedstocks represents a sustainable approach for storing intermittent renewable energy and reducing CO emissions. However, this process is still impeded by the inherent inertness of CO and the production of multiple intermediates. Herein, we propose a strategy that facilitates the direct cleavage of carbonate intermediates to boost photothermal catalytic CO conversion. A highly efficient catalyst featuring active sites designed to improve the carbonate coverage was successfully constructed, composed of atomically dispersed praseodymium-modified ceria loaded with highly dispersed nickel species (Ni/Pr-CeO). The fine structure of the prepared catalysts was revealed by high-resolution, high-angle annular dark-field scanning transmission electron microscopy, and X-ray absorption fine structure. Multiple / spectroscopy techniques confirmed the active participation of interface oxygen species from Ni/Pr-CeO in enhancing carbonate (CO*) and bicarbonate (HCO*) intermediates coverage and transformation. In particular, under light irradiation, the C═O bonds within these intermediates are effectively weakened and cleaved, overcoming the high energy barrier associated with CO activation and enabling efficient CO production. As a result, the Ni/Pr-CeO catalyst demonstrates a high CO yield of 27.2 mol mol min, which is nearly three times higher than that of the Ni/CeO catalyst and maintains exceptional stability over 110 h without deactivation. Our findings contribute to the development of efficient catalytic systems that not only recycle greenhouse gases but also facilitate the integration of intermittent renewable energy sources into the chemical production landscape.

摘要

将二氧化碳(CO₂)光热催化还原为有价值的化学原料是一种储存间歇性可再生能源和减少CO₂排放的可持续方法。然而,这一过程仍受到CO₂固有惰性和多种中间体生成的阻碍。在此,我们提出一种策略,促进碳酸盐中间体的直接裂解以提高光热催化CO₂转化。成功构建了一种高效催化剂,其活性位点经设计可提高碳酸盐覆盖率,由负载高度分散镍物种的原子级分散镨改性二氧化铈组成(Ni/Pr-CeO)。通过高分辨率、高角度环形暗场扫描透射电子显微镜和X射线吸收精细结构揭示了所制备催化剂的精细结构。多种光谱技术证实了Ni/Pr-CeO界面氧物种在增强碳酸盐(CO₃²⁻)和碳酸氢盐(HCO₃⁻)中间体覆盖率及转化方面的积极参与。特别是在光照下,这些中间体中的C═O键被有效削弱和裂解,克服了与CO₂活化相关的高能垒,实现了高效的CO生成。结果,Ni/Pr-CeO催化剂表现出27.2 μmol g⁻¹ min⁻¹的高CO产率,几乎是Ni/CeO催化剂的三倍,并且在110小时内保持出色的稳定性而不失活。我们的研究结果有助于开发高效催化系统,该系统不仅能回收温室气体,还能促进间歇性可再生能源融入化学生产领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验