Papadopoulou Athina, Pintor-Monroy Maria Isabel, Dayaran Sreeshma, Skvortsova Irina, de Sousa Gouveia Dos Anjos João Pedro, Subramaniam Sownder, Song Wenya, Lieberman Itai, Kuang Yinghuan, Hofkens Johan, Roeffaers Maarten B J, Bals Sara, Gehlhaar Robert, Genoe Jan
imec, Kapeldreef 75, Leuven 3001, Belgium.
Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, Leuven 3001, Belgium.
ACS Appl Mater Interfaces. 2025 Jul 23;17(29):42096-42107. doi: 10.1021/acsami.5c06812. Epub 2025 Jul 11.
Having proven their potential as visible and near-infrared light detectors, metal halide perovskites are now being integrated with thin-film transistor- or silicon-based read-out circuits for high-resolution imaging applications. Vacuum-deposited, all-inorganic perovskite photodiodes (PePDs) offer a superior alternative to solution-processed hybrid organic-inorganic perovskites, addressing their specific limitations in semiconductor fabrication process compatibility. Specifically, vacuum processing overcomes challenges related to limited scalability and reproducibility, while the development of photodiodes made entirely of inorganic compounds improves their resilience at high-temperature environments. At the same time, the performance of vacuum-deposited, all-inorganic PePDs has proven competitive with that of their solution-processed hybrid organic-inorganic counterparts. Building on this progress, this study demonstrates that the careful tuning of the electron transport layer (ETL) can achieve a 3-fold optimization in the performance of all-inorganic, vacuum-deposited PePDs, through improvements in device performance repeatability, operational stability under reverse bias, and carrier extraction speed. Specifically, we identify that the combination of a fullerene and a metal oxide transport layer, as well as the careful tuning of their respective thicknesses, can simultaneously prevent metallic shorts, reduce the amount of interface defect states, and extend the depletion width of the photodiode. Eventually, the optimized photodiodes exhibit minimal variability in device performance, maintaining a stable dark current density below 0.1 μA/cm even after biasing at -2 V for 1 h. They also demonstrate a rise time below 2 μs, with results confirming the potential for sub-μs response times for further scaled-down pixel sizes.
金属卤化物钙钛矿已证明其作为可见光和近红外光探测器的潜力,目前正与基于薄膜晶体管或硅的读出电路集成,用于高分辨率成像应用。真空沉积的全无机钙钛矿光电二极管(PePD)为溶液处理的有机-无机混合钙钛矿提供了一种优越的替代方案,解决了它们在半导体制造工艺兼容性方面的特定限制。具体而言,真空处理克服了与可扩展性和可重复性有限相关的挑战,而完全由无机化合物制成的光电二极管的开发提高了它们在高温环境下的弹性。同时,真空沉积的全无机PePD的性能已证明与溶液处理的有机-无机混合同类产品具有竞争力。基于这一进展,本研究表明,通过改进器件性能的可重复性、反向偏置下的操作稳定性和载流子提取速度,仔细调整电子传输层(ETL)可以使全无机、真空沉积的PePD的性能实现3倍优化。具体而言,我们发现富勒烯和金属氧化物传输层的组合以及对它们各自厚度的仔细调整,可以同时防止金属短路、减少界面缺陷态的数量并扩展光电二极管的耗尽宽度。最终,优化后的光电二极管在器件性能上表现出最小的变化,即使在-2 V偏置1小时后,暗电流密度仍保持在0.1 μA/cm²以下。它们的上升时间也低于2 μs,结果证实了进一步缩小像素尺寸时亚微秒响应时间的潜力。