Suppr超能文献

SLC3A2作为黑色素瘤预后和肿瘤微环境重塑的关键失巢凋亡相关基因。

SLC3A2 as a key anoikis-related gene for prognosis and tumor microenvironment remodeling in melanoma.

作者信息

Liu Xiaojin, Xie Jiaheng, Xiao Yingying

机构信息

Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

出版信息

Discov Oncol. 2025 Jul 11;16(1):1306. doi: 10.1007/s12672-025-03125-7.

Abstract

OBJECTIVE

Anoikis, a form of programmed cell death triggered by detachment from the extracellular matrix, plays a crucial role in metastasis and immune escape in melanoma. We aimed to identify anoikis-related prognostic markers using integrated machine learning and single-cell analysis.

METHODS

We integrated single-cell RNA sequencing data from the GEO dataset GSE215120 and transcriptomic profiles from multiple melanoma cohorts, including TCGA, GSE19234, GSE22153, and GSE65904. Batch effects in single-cell data were corrected using the Harmony algorithm. Cell subpopulations were annotated via t-SNE dimensionality reduction and canonical markers, and AUCell was employed to compute the enrichment scores of anoikis-related genes across cell subtypes. A total of 150 anoikis-related genes were identified, and 101 machine learning algorithms and their combinations (including Cox regression, random survival forest, and gradient boosting machine) were systematically evaluated to identify the optimal prognostic model. Model performance was validated in independent cohorts using the concordance index (C-index), Kaplan-Meier survival analysis, and time-dependent ROC curves. Tumor microenvironment characteristics were assessed using ESTIMATE, CIBERSORT, and GSVA. The clinical relevance and functional role of SLC3A2 were further validated using the BEST database and in vitro experiments, including shRNA-mediated knockdown, colony formation, and Transwell migration assays.

RESULTS

Single-cell analysis revealed significantly elevated anoikis scores in endothelial cells, fibroblasts, and melanocytes. High-scoring subpopulations exhibited more active cell-cell communication networks centered on endothelial cells. The "random survival forest + gradient boosting machine" model demonstrated optimal prognostic performance across the TCGA training cohort and validation cohorts (GSE19234, GSE22153, GSE65904), with a C-index of 0.774. Patients in the high-risk group had significantly shorter overall survival, and the model achieved strong predictive accuracy with AUCs ranging from 0.64 to 0.81 for 1-, 3-, and 5-year survival. Tumor microenvironment analysis indicated reduced immune infiltration (CD8⁺ T cells, B cells) in the high-risk group, suggestive of an immunosuppressive phenotype. SLC3A2 was highly expressed in melanoma and correlated with advanced T stage, drug resistance, and poor prognosis. Knockdown of SLC3A2 suppressed melanoma cell proliferation and migration in vitro.

CONCLUSION

This study highlights the pivotal role of anoikis resistance in melanoma heterogeneity and immune microenvironment remodeling. The machine learning-based prognostic model we constructed holds clinical translational potential, and SLC3A2 was validated as a potential therapeutic target, offering new strategies for precision treatment of melanoma.

摘要

目的

失巢凋亡是一种由与细胞外基质脱离触发的程序性细胞死亡形式,在黑色素瘤的转移和免疫逃逸中起关键作用。我们旨在通过整合机器学习和单细胞分析来鉴定与失巢凋亡相关的预后标志物。

方法

我们整合了来自GEO数据集GSE215120的单细胞RNA测序数据以及多个黑色素瘤队列(包括TCGA、GSE19234、GSE22153和GSE65904)的转录组图谱。使用Harmony算法校正单细胞数据中的批次效应。通过t-SNE降维和典型标志物对细胞亚群进行注释,并使用AUCell计算失巢凋亡相关基因在不同细胞亚型中的富集分数。共鉴定出150个与失巢凋亡相关的基因,并系统评估了101种机器学习算法及其组合(包括Cox回归、随机生存森林和梯度提升机)以确定最佳预后模型。使用一致性指数(C-index)、Kaplan-Meier生存分析和时间依赖性ROC曲线在独立队列中验证模型性能。使用ESTIMATE、CIBERSORT和GSVA评估肿瘤微环境特征。使用BEST数据库和体外实验(包括shRNA介导的敲低、集落形成和Transwell迁移试验)进一步验证SLC3A2的临床相关性和功能作用。

结果

单细胞分析显示内皮细胞、成纤维细胞和黑素细胞中的失巢凋亡分数显著升高。高分亚群表现出以内皮细胞为中心的更活跃的细胞间通讯网络。“随机生存森林+梯度提升机”模型在TCGA训练队列和验证队列(GSE19234、GSE22153、GSE65904)中表现出最佳预后性能,C-index为0.774。高危组患者的总生存期明显缩短,该模型对1年、3年和5年生存率的预测准确性较强,AUC范围为0.64至0.81。肿瘤微环境分析表明高危组中免疫浸润(CD8⁺T细胞、B细胞)减少,提示免疫抑制表型。SLC3A2在黑色素瘤中高表达,与晚期T分期、耐药性和不良预后相关。敲低SLC3A2可抑制黑色素瘤细胞在体外的增殖和迁移。

结论

本研究强调了失巢凋亡抗性在黑色素瘤异质性和免疫微环境重塑中的关键作用。我们构建的基于机器学习的预后模型具有临床转化潜力,并且SLC3A2被验证为潜在的治疗靶点,为黑色素瘤的精准治疗提供了新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee93/12254447/ba5a6d6ba7d8/12672_2025_3125_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验