Simoncelli Michele, Fournier Daniele, Marangolo Massimiliano, Balan Etienne, Béneut Keevin, Baptiste Benoit, Doisneau Béatrice, Marzari Nicola, Mauri Francesco
Theory of Condensed Matter Group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2422763122. doi: 10.1073/pnas.2422763122. Epub 2025 Jul 11.
The thermal conductivities of crystals and glasses vary strongly and with opposite trends upon heating, decreasing in crystals and increasing in glasses. Here, we show that the dominant conduction mechanisms of crystals (particle-like propagation) and glasses (wave-like tunneling) can compensate in materials with crystalline bond order and nearly glassy bond geometry, yielding a hybrid crystal-glass conductivity that is constant from the quantum to the classical regime (i.e., from below to above the Debye temperature). We showcase these arguments with a combined theoretical and experimental study on meteoritic silica (a tridymite carved from a sample found in Steinbach, Germany, in 1724) and on a geometrically amorphous tridymite phase found in refractory bricks used in furnaces for steel smelting. Our results prove that temperature-invariant conductivities are not limited to the classical regime, and pave the way to understand or control heat-transport phenomena in solids exposed to extreme temperature variations, ranging from planetary cooling to heating protocols to reduce the carbon footprint of industrial furnaces.
晶体和玻璃的热导率变化很大,且在加热时呈现相反的趋势,晶体的热导率降低,而玻璃的热导率增加。在此,我们表明,晶体(类粒子传播)和玻璃(类波隧穿)的主导传导机制可以在具有晶体键序和近乎玻璃态键几何结构的材料中相互补偿,产生一种混合晶体-玻璃电导率,该电导率在从量子到经典 regime(即从低于到高于德拜温度)范围内保持恒定。我们通过对陨石二氧化硅(一种从1724年在德国施泰因巴赫发现的样本中切割出的鳞石英)和在用于钢铁冶炼的熔炉耐火砖中发现的几何非晶态鳞石英相进行的理论与实验相结合的研究来阐述这些观点。我们的结果证明,温度不变的电导率并不局限于经典 regime,为理解或控制暴露于极端温度变化的固体中的热传输现象铺平了道路,这些温度变化范围从行星冷却到加热方案,以减少工业熔炉的碳足迹。