Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201.
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2302541120. doi: 10.1073/pnas.2302541120. Epub 2023 Jun 20.
We propose a first-principles model of minimum lattice thermal conductivity ([Formula: see text]) based on a unified theoretical treatment of thermal transport in crystals and glasses. We apply this model to thousands of inorganic compounds and find a universal behavior of [Formula: see text] in crystals in the high-temperature limit: The isotropically averaged [Formula: see text] is independent of structural complexity and bounded within a range from ∼0.1 to ∼2.6 W/(m K), in striking contrast to the conventional phonon gas model which predicts no lower bound. We unveil the underlying physics by showing that for a given parent compound, [Formula: see text] is bounded from below by a value that is approximately insensitive to disorder, but the relative importance of different heat transport channels (phonon gas versus diffuson) depends strongly on the degree of disorder. Moreover, we propose that the diffuson-dominated [Formula: see text] in complex and disordered compounds might be effectively approximated by the phonon gas model for an ordered compound by averaging out disorder and applying phonon unfolding. With these insights, we further bridge the knowledge gap between our model and the well-known Cahill-Watson-Pohl (CWP) model, rationalizing the successes and limitations of the CWP model in the absence of heat transfer mediated by diffusons. Finally, we construct graph network and random forest machine learning models to extend our predictions to all compounds within the Inorganic Crystal Structure Database (ICSD), which were validated against thermoelectric materials possessing experimentally measured ultralow . Our work offers a unified understanding of [Formula: see text], which can guide the rational engineering of materials to achieve [Formula: see text].
我们提出了一种基于晶体和玻璃热输运的统一理论处理的晶格热导率的第一性原理模型([Formula: see text])。我们将此模型应用于数千种无机化合物,并发现晶体中[Formula: see text]在高温极限下的普遍行为:各向同性平均[Formula: see text]独立于结构复杂性,并且在 0.1 到 2.6 W/(m K) 的范围内有界,这与传统的声子气体模型形成鲜明对比,后者没有下限预测。通过表明对于给定的母体化合物,[Formula: see text]由一个近似不依赖于无序的下限值来限定,而不同热输运通道(声子气体与扩散子)的相对重要性强烈依赖于无序的程度,我们揭示了这种普遍行为的潜在物理机制。此外,我们提出,在复杂和无序的化合物中,扩散子主导的[Formula: see text]可能通过对无序进行平均并应用声子展开来有效地通过有序化合物的声子气体模型进行近似。有了这些见解,我们进一步弥合了我们的模型和著名的 Cahill-Watson-Pohl (CWP) 模型之间的知识差距,在没有扩散子介导的热传递的情况下,解释了 CWP 模型的成功和局限性。最后,我们构建了图网络和随机森林机器学习模型,将我们的预测扩展到无机晶体结构数据库 (ICSD) 中的所有化合物,并通过具有实验测量的超低[Formula: see text]的热电材料对其进行了验证。我们的工作为[Formula: see text]提供了统一的理解,可以指导对材料进行合理的工程设计,以实现[Formula: see text]。