Paravano Michele, Refai Mohamed Irfan, Van Der Kooij Herman, Sartori Massimo
IEEE Int Conf Rehabil Robot. 2025 May;2025:854-859. doi: 10.1109/ICORR66766.2025.11062986.
Characterization of lower limb joint impedance during locomotion is crucial for advancing our understanding of walking biomechanics, while also guiding the development of assistive technologies and rehabilitation strategies. Identification of impedance parameters is dependent on perturbation strategies which elicit measurable responses at the joint of interest. However current perturbation methodologies applied during locomotion either work in the swing phase or employ exoskeleton based setups which can add complexity and weight to the leg. This study introduces and evaluates a perturbation methodology using a custom-designed pusher system to elicit multi-joint-level torque and angular responses during the stance phase of gait for different conditions. Controlled perturbations applied behind the tibia revealed measurable dynamic response at the knee and ankle joint, while preserving the gait cycle's overall pattern. Torque-angle and torque-velocity graphs reveal insights into energy and power changes between perturbed and unperturbed gait cycles. The method can be adapted to various walking speeds, perturbation intensities, and durations, providing the first step for future estimation of joint impedance during locomotion.
在运动过程中对下肢关节阻抗进行表征,对于深化我们对步行生物力学的理解至关重要,同时也有助于指导辅助技术和康复策略的发展。阻抗参数的识别依赖于能在感兴趣关节引发可测量响应的扰动策略。然而,目前在运动过程中应用的扰动方法要么在摆动阶段起作用,要么采用基于外骨骼的设置,这可能会增加腿部的复杂性和重量。本研究介绍并评估了一种使用定制设计的推动系统的扰动方法,以在不同条件下的步态站立阶段引发多关节水平的扭矩和角度响应。在胫骨后方施加的受控扰动揭示了膝关节和踝关节处可测量的动态响应,同时保持了步态周期的整体模式。扭矩-角度和扭矩-速度图揭示了受扰动和未受扰动步态周期之间能量和功率变化的见解。该方法可适应各种步行速度、扰动强度和持续时间,为未来运动过程中关节阻抗的估计提供了第一步。