Section of Sport, Exercise and Rehabilitation Science, School of Psychology and Life Sciences, Canterbury Christ Church University, North Holmes Road Campus, Canterbury, Kent CT1 1QU, UK.
Clinical Motion Analysis Laboratory, University Hospital Leuven, Weligerveld 1, 3212 Pellenberg, Belgium; Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
Gait Posture. 2022 Oct;98:343-354. doi: 10.1016/j.gaitpost.2022.09.082. Epub 2022 Sep 26.
Robotic exoskeletons have been developed to assist locomotion and address gait abnormalities in children with cerebral palsy (CP). These wearable assistive devices provide powered assistance to the lower-extremity joints, as well as support and stability.
Does exoskeleton-assisted walking improve gait in children with CP?
The PRISMA guidelines were used to conduct this systematic review. Articles were obtained in a search of the following electronic databases: Embase, CINAHL Complete, PubMed, Web of Science and MEDLINE. Studies investigating spatiotemporal, kinematic, kinetic, muscle activity and/or physiological parameters during exoskeleton-assisted walking in children with CP were included. All articles were assessed for methodological quality using an adapted version of the Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group, provided by the National Institutes of Health (NIH).
Thirteen studies were included. They involved the use of the following exoskeletons: tethered knee exoskeleton, pediatric knee exoskeleton (P.REX), untethered ankle exoskeleton, WAKE-Up ankle module, WAKE-Up ankle & knee module and unilateral ankle exosuit. Methodological quality varied, with key limitations in sample size and allocated time to adapt to the exoskeleton. There was a consensus that robotic exoskeletons improve gait given careful optimisation of exoskeleton torque and sufficient exoskeleton practice time for each participant. Improvements in gait included reduced metabolic cost of walking, increased walking speed, and increased knee and hip extension during stance. Furthermore, exoskeletons with an actuated ankle module were shown to promote normal ankle rocker function.
Robotic exoskeletons have the potential to improve the mobility of CP children and may therefore increase community participation and improve quality of life. Future work should involve larger controlled intervention studies utilising robotic exoskeletons to improve gait in children with CP. These studies should ensure sufficient exoskeleton practice time for each participant.
为了帮助脑瘫儿童(CP)改善运动和步态异常,研发了外骨骼机器人。这些可穿戴式辅助设备为下肢关节提供动力辅助,并提供支撑和稳定性。
外骨骼辅助行走是否能改善 CP 儿童的步态?
本系统评价采用 PRISMA 指南进行。通过对以下电子数据库进行检索获得文章:Embase、CINAHL Complete、PubMed、Web of Science 和 MEDLINE。纳入研究为探讨 CP 儿童使用外骨骼机器人辅助行走时的时空、运动学、动力学、肌肉活动和/或生理参数的研究。所有文章均使用美国国立卫生研究院(NIH)提供的改良版无对照组前后(Pre-Post)研究质量评估工具进行方法学质量评估。
共纳入 13 项研究。研究涉及的外骨骼机器人包括: tethered knee exoskeleton、pediatric knee exoskeleton (P.REX)、untethered ankle exoskeleton、WAKE-Up ankle module、WAKE-Up ankle & knee module 和 unilateral ankle exosuit。方法学质量存在差异,主要局限在于样本量和分配给适应外骨骼的时间。机器人外骨骼可以改善步态,这一点已达成共识,方法是对外骨骼扭矩进行仔细优化,并为每位参与者提供足够的外骨骼练习时间。步态改善包括降低步行代谢成本、提高步行速度以及增加站立时膝关节和髋关节伸展。此外,带有主动踝关节模块的外骨骼机器人被证明可以促进正常的踝关节摆动功能。
外骨骼机器人有可能改善 CP 儿童的活动能力,从而增加他们的社区参与度和提高生活质量。未来的工作应包括使用外骨骼机器人改善 CP 儿童步态的更大规模的对照干预研究。这些研究应确保为每位参与者提供足够的外骨骼练习时间。