Fu Jirui, Huang Helen J, Wen Yue
IEEE Int Conf Rehabil Robot. 2025 May;2025:1-6. doi: 10.1109/ICORR66766.2025.11062970.
Prior studies demonstrated encouraging results in the application of convolution neural network models (CNN), one-dimensional (1D CNN), or three-dimensional (3D CNN) convolutional layers to decode the neural drive to muscles from highdensity surface electromyography (HD-sEMG) signals. However, the impact of the dimensionality (1D or 3D) of the convolutional layers on the performance of the deep CNN models using the same dataset has yet to be investigated. This study assesses the performance of 3D CNNs and 1D CNNs in extracting the neural drive as a cumulative spike train (CST) under various window sizes and step sizes that are critical parameters in decoding neural drives. Experimental HD-sEMG dataset sourced from the gastrocnemius medialis muscle of three participants, alongside the corresponding neural drive decoded using the convolution kernel compensation (CKC) algorithm, was employed to train and validate the 1D and 3D CNN models. We compared the F1 score and correlation coefficient between the CST from CKC and those from both 1D and 3D CNN models, revealing that 1D CNN performs more effectively with larger sliding window sizes (80 or 120 samples) with a peak F1 score of 0.84 and a correlation of 0.94. In contrast, 3D CNN achieves peak F1 score (0.83) and correlation (0.92) with smaller sliding window sizes (20 or 40 samples), indicating reduced latency in using 3D CNN to decode neural drives. Both models experience a performance decline as the step size increases. Furthermore, this research evaluates the computational cost of 1D and 3D CNN models, finding that the 3D CNN model requires significantly more computational resources (938G FLOPs) than the 1D CNN model (60G FLOPs). The results elucidate significant distinctions between CNN architectures and identify optimal parameters and model selection for precise and real-time neural drive decoding.
先前的研究表明,在应用卷积神经网络模型(CNN)、一维(1D CNN)或三维(3D CNN)卷积层来从高密度表面肌电图(HD-sEMG)信号中解码神经对肌肉的驱动方面取得了令人鼓舞的成果。然而,卷积层的维度(1D或3D)对使用相同数据集的深度CNN模型性能的影响尚未得到研究。本研究评估了3D CNN和1D CNN在各种窗口大小和步长下提取神经驱动作为累积尖峰序列(CST)的性能,这些参数是解码神经驱动的关键参数。来自三名参与者的腓肠肌的实验性HD-sEMG数据集,以及使用卷积核补偿(CKC)算法解码的相应神经驱动,被用于训练和验证1D和3D CNN模型。我们比较了CKC的CST与1D和3D CNN模型的CST之间的F1分数和相关系数,结果表明,1D CNN在较大的滑动窗口大小(80或120个样本)下表现更有效,峰值F1分数为0.84,相关性为0.94。相比之下,3D CNN在较小的滑动窗口大小(20或40个样本)下达到峰值F1分数(0.83)和相关性(0.92),这表明使用3D CNN解码神经驱动的延迟更低。随着步长增加,两个模型的性能都会下降。此外,本研究评估了1D和3D CNN模型的计算成本,发现3D CNN模型比1D CNN模型(60G FLOPs)需要显著更多的计算资源(938G FLOPs)。结果阐明了CNN架构之间的显著差异,并确定了用于精确和实时神经驱动解码的最佳参数和模型选择。