Malik Deesha D, Bhatia Shilpa, Lundahl Maike N, Bautel Haley N, Rogers Dylan M, Kaminsky Werner, Kovacs Julie A
The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States.
J Am Chem Soc. 2025 Jul 23;147(29):25337-25349. doi: 10.1021/jacs.5c04340. Epub 2025 Jul 11.
Herein, we show for the first time that thiolate ligands can play an important role in promoting 2e- oxo atom transfer with nonheme iron. We examine the mechanism of oxo atom transfer to a thiolate sulfur for two structurally related iron complexes using low-temperature kinetics, spectroscopic, and computational methods. Intermediate oxo atom donor adducts, FeOIAr, are spectroscopically characterized and shown to have electronic spectral, EPR, and Mössbauer parameters, and kinetic barriers dependent on the nature of the oxo atom donor. More stable adducts containing pyridine N-oxide (PNO) were crystallographically characterized and computationally optimized to establish optimum functionals and basis sets. Oxo atom transfer is shown both experimentally and computationally to involve a stepwise, as opposed to a concerted, mechanism. A new metastable intermediate is observed by low-temperature Mössbauer and ⊥-mode EPR after the Fe-OIPh intermediate and prior to the final sulfenate Fe-OSR product. The DFT calculated minimum energy pathway is shown to contain a local minimum between the Fe-OIPh adduct and Fe-S(R)O product. The DFT optimized geometric and electronic structure of this intermediate is shown to be consistent with an = 1 Fe(IV)═O that is antiferromagnetically coupled to an = 1/2 radical delocalized over the two cis thiolate-sulfurs, analogous to the electronic configuration of P450 Cmpd I. Radical character on the thiolate sulfur adjacent to the oxo is shown to facilitate trapping of the high-valent Fe-oxo as a η-SO-Fe sulfenate complex.
在此,我们首次表明硫醇盐配体在促进非血红素铁的双电子氧原子转移中可发挥重要作用。我们使用低温动力学、光谱学和计算方法研究了两种结构相关的铁配合物中氧原子向硫醇盐硫转移的机理。通过光谱对中间氧原子供体加合物FeOIAr进行了表征,结果表明其电子光谱、电子顺磁共振(EPR)和穆斯堡尔参数以及动力学势垒取决于氧原子供体的性质。对含有吡啶N-氧化物(PNO)的更稳定加合物进行了晶体学表征和计算优化,以确定最佳泛函和基组。实验和计算结果均表明,氧原子转移涉及分步机理,而非协同机理。在Fe-OIPh中间体之后且在最终亚磺酸盐Fe-OSR产物之前,通过低温穆斯堡尔光谱和⊥模式EPR观察到一种新的亚稳中间体。密度泛函理论(DFT)计算的最低能量路径显示在Fe-OIPh加合物和Fe-S(R)O产物之间存在一个局部最小值。该中间体的DFT优化几何结构和电子结构表明,其与一个自旋量子数S = 1的Fe(IV)═O反铁磁耦合,该Fe(IV)═O与一个自旋量子数S = 1/2的自由基离域在两个顺式硫醇盐硫上,类似于细胞色素P450复合中间体I的电子构型。结果表明,与氧相邻的硫醇盐硫上的自由基特性有助于捕获高价Fe-氧作为η-SO-Fe亚磺酸盐配合物。