Suppr超能文献

使用伽马过程预测地铁受电弓滑板的剩余使用寿命及其对维护计划的影响。

Predicting the remaining useful life of metro pantograph sliding strips using gamma processes and its implications for maintenance scheduling.

作者信息

Liu Jie, Wu Chuang

机构信息

School of Intelligent Manufacturing and Transportation, Chongqing Vocational Institute of Engineering, Chongqing, China.

Maintenance Department, Chongqing Rail Transit (Group) Co.Ltd, Chongqing, China.

出版信息

PLoS One. 2025 Jul 11;20(7):e0327769. doi: 10.1371/journal.pone.0327769. eCollection 2025.

Abstract

The progressive wear of pantograph sliding strips on metro trains necessitates timely replacement to ensure safe and reliable operations. This study proposes an adaptive, data-driven framework for predicting the remaining useful life (RUL) of these components, leveraging operational data from Chongqing Metro Line 6. A Gamma-process model is employed to capture the wear behavior under real-world operating conditions, integrating historical records and new observations through Bayesian inference. Markov chain Monte Carlo (MCMC) sampling is then applied to solve the posterior distribution, with three parameter-estimation approaches compared and the model's predictive accuracy evaluated across different life-cycle stages. The results demonstrate that incorporating prior knowledge significantly improves prediction accuracy. To showcase practical utility, the study devises a maintenance-scheduling strategy that integrates RUL forecasts with regular vehicle-maintenance intervals, thereby extending service life and reducing costs. Validated using real-world data, the proposed methodology offers a pragmatic tool for predictive maintenance in metro systems and can be adapted to similar engineering applications.

摘要

地铁列车受电弓滑板的渐进磨损需要及时更换,以确保安全可靠运行。本研究利用重庆地铁6号线的运行数据,提出了一种自适应、数据驱动的框架,用于预测这些部件的剩余使用寿命(RUL)。采用伽马过程模型来捕捉实际运行条件下的磨损行为,通过贝叶斯推理整合历史记录和新观测数据。然后应用马尔可夫链蒙特卡罗(MCMC)采样来求解后验分布,比较了三种参数估计方法,并评估了模型在不同生命周期阶段的预测准确性。结果表明,纳入先验知识可显著提高预测准确性。为展示实际效用,该研究设计了一种维护调度策略,将RUL预测与定期车辆维护间隔相结合,从而延长使用寿命并降低成本。通过实际数据验证,所提出的方法为地铁系统的预测性维护提供了一个实用工具,并且可以适用于类似的工程应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b5/12250525/65cc9591fddd/pone.0327769.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验