Suppr超能文献

通过二维/零维纳米异质结工程增强光热转换以实现高效太阳能海水淡化

Enhanced Photothermal Conversion through 2D/0D Nano-Heterojunction Engineering for Highly Efficient Solar Desalination.

作者信息

Wang Honglei, Bo Yifan, Wang Hongguang, Klingenhof Malte, Tao Zhehao, Wang Dong, Wu Bing, Tamayo Adrián, Han Bin, Cheng Pengfei, van Aken Peter A, Sofer Zdenek, Chen Runfeng, Strasser Peter, Schaaf Peter, Guldi Dirk M, Samorì Paolo

机构信息

University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg F-67000, France.

Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, Ilmenau 98693, Germany.

出版信息

J Am Chem Soc. 2025 Jul 23;147(29):25750-25760. doi: 10.1021/jacs.5c07491. Epub 2025 Jul 11.

Abstract

Two-dimensional (2D) materials are promising candidates for solar-driven desalination. However, conventional photothermal 2D materials like transition metal carbides and nitrides (MXenes) as well as transition metal dichalcogenides (TMDs) suffer from major limitations such as their complex synthesis and low photothermal conversion efficiency. In contrast, metal phosphorus trichalcogenides (MPCh) do not display the same drawbacks and possess widely tunable bandgaps (1.2-3.5 eV), making them ideal candidates for solar desalination. Moreover, their properties and applications related to light-matter interactions can be further enhanced by coupling with other low-dimensional nanostructures, tailoring hybrid van der Waals heterostructures of mixed dimensionality. Herein, we report the synthesis of FePS nanosheets/carbon nanodots (CNDs) 2D/0D nanoheterojunctions and their photothermal response when integrated into a 3D photothermal evaporator. These nanoheterojunctions exhibited high photothermal conversion performance, with an average absorbance of 90.6% from the UV to the NIR and a temperature increase of 42 °C over the blank control under 1 sun illumination for 300 s. A high water evaporation rate of 1.68 kg m h was observed under the same condition. Photothermal conversion and water evaporation experiments, along with femtosecond transient absorption spectroscopy (fs-TAS), photoluminescence (PL) analysis, and finite-difference time-domain (FDTD) simulations, revealed that the incorporation of CNDs and formation of the nanoheterojunction synergistically enhance localized heating and light absorption, improve trapping efficiency, and optimize nonradiative transition pathways. This study demonstrates the disruptive potential of the rational design of high-performance 2D material hybrids through MPCh-based nanoheterojunction engineering, unveiling its transformative capability for use in solar desalination and photothermal technologies.

摘要

二维(2D)材料是太阳能驱动海水淡化的理想候选材料。然而,传统的光热二维材料,如过渡金属碳化物和氮化物(MXenes)以及过渡金属二硫属化物(TMDs),存在诸如合成复杂和光热转换效率低等主要局限性。相比之下,金属三硫属磷化物(MPCh)不存在这些缺点,并且具有广泛可调的带隙(1.2 - 3.5电子伏特),使其成为太阳能海水淡化的理想候选材料。此外,通过与其他低维纳米结构耦合,定制混合维度的范德华异质结构,可以进一步增强它们与光物质相互作用相关的性能和应用。在此,我们报道了FePS纳米片/碳纳米点(CNDs)二维/零维纳米异质结的合成及其集成到三维光热蒸发器中的光热响应。这些纳米异质结表现出高光热转换性能,在1个太阳光照下300秒内,从紫外到近红外的平均吸光度为90.6%,比空白对照温度升高42℃。在相同条件下观察到高水蒸发速率为1.68 kg m⁻² h⁻¹。光热转换和水蒸发实验,以及飞秒瞬态吸收光谱(fs - TAS)、光致发光(PL)分析和时域有限差分(FDTD)模拟表明,CNDs的掺入和纳米异质结的形成协同增强了局部加热和光吸收,提高了俘获效率,并优化了非辐射跃迁途径。这项研究展示了通过基于MPCh的纳米异质结工程合理设计高性能二维材料杂化物的颠覆性潜力,揭示了其在太阳能海水淡化和光热技术中的变革能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验