Mao Wei, Wang Xueye, Li Luncao, Fu Kunkun, Li Xuesong, Wang Zhiwei
State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China.
Environ Sci Technol. 2025 Jul 15;59(27):14139-14149. doi: 10.1021/acs.est.5c03044. Epub 2025 Jul 3.
Solar-driven interfacial evaporation (SDIE) has emerged as a promising technology for sustainable desalination and brine management. However, conventional SDIE systems have struggled to enhance evaporation efficiency while mitigating salt scaling. Here, we introduce an innovative 3D-printed photothermal stainless steel SDIE system designed to address these limitations. By leveraging the high thermal conductivity of stainless steel, our design creates a strategic temperature differential across the SDIE, maximizing energy harvesting from solar radiation, ambient air, and feedwater. The unique edge-protruding structure facilitates localized salt crystallization and autonomous detachment, achieving effective salt self-collection. Numerical simulations reveal that Marangoni convection drives liquid flow toward the edge for the controlled salt crystallization. Under one sun radiation, our system achieves a remarkable evaporation rate of 3.18 kg m h and a salt collection rate of 1.57 kg m h with highly concentrated brine (25 wt % NaCl solution). Outdoor and real brine tests validated its capability for zero liquid discharge desalination, demonstrating both enhanced desalination efficiency and sustainable brine management through simultaneous water recovery and salt collection. This study offers a new strategy for designing highly efficient SDIE systems, addressing the challenges of sustainable desalination and paving the way for future advancements in water treatment technologies.
太阳能驱动的界面蒸发(SDIE)已成为一种用于可持续海水淡化和盐水管理的有前景的技术。然而,传统的SDIE系统在提高蒸发效率的同时减轻盐垢方面一直存在困难。在此,我们介绍一种创新的3D打印光热不锈钢SDIE系统,旨在解决这些局限性。通过利用不锈钢的高导热性,我们的设计在SDIE上产生了一个战略性的温差,最大限度地从太阳辐射、环境空气和给水收集能量。独特的边缘突出结构促进了局部盐结晶和自动分离,实现了有效的盐自我收集。数值模拟表明,马兰戈尼对流驱动液体流向边缘以实现可控的盐结晶。在一个太阳辐射下,我们的系统在高浓度盐水(25 wt% NaCl溶液)中实现了3.18 kg m⁻² h⁻¹ 的显著蒸发速率和1.57 kg m⁻² h⁻¹ 的盐收集速率。户外和实际盐水测试验证了其零液体排放海水淡化的能力,通过同时进行水回收和盐收集展示了增强的海水淡化效率和可持续的盐水管理。本研究为设计高效的SDIE系统提供了一种新策略,解决了可持续海水淡化的挑战,并为水处理技术的未来发展铺平了道路。