Suppr超能文献

利用深度学习从磁共振成像扫描中进行儿科胰腺分割

Pediatric pancreas segmentation from MRI scans with deep learning.

作者信息

Keles Elif, Yazol Merve, Durak Gorkem, Hong Ziliang, Aktas Halil Ertugrul, Zhang Zheyuan, Peng Linkai, Susladkar Onkar, Guzelyel Necati, Boyunaga Oznur Leman, Yazici Cemal, Lowe Mark, Uc Aliye, Bagci Ulas

机构信息

Department of Radiology, Northwestern University, IL, USA.

Department of Radiology, Gazi University Faculty of Medicine, Ankara, Türkiye.

出版信息

Pancreatology. 2025 Aug;25(5):648-657. doi: 10.1016/j.pan.2025.06.006. Epub 2025 Jun 16.

Abstract

OBJECTIVE

Our study aimed to evaluate and validate PanSegNet, a deep learning (DL) algorithm for pediatric pancreas segmentation on MRI in children with acute pancreatitis (AP), chronic pancreatitis (CP), and healthy controls.

METHODS

With IRB approval, we retrospectively collected 84 MRI scans (1.5T/3T Siemens Aera/Verio) from children aged 2-19 years at Gazi University (2015-2024). The dataset includes healthy children as well as patients diagnosed with AP or CP based on clinical criteria. Pediatric and general radiologists manually segmented the pancreas, then confirmed by a senior pediatric radiologist. PanSegNet-generated segmentations were assessed using Dice Similarity Coefficient (DSC) and 95th percentile Hausdorff distance (HD95). Cohen's kappa measured observer agreement.

RESULTS

Pancreas MRI T2W scans were obtained from 42 children with AP/CP (mean age: 11.73 ± 3.9 years) and 42 healthy children (mean age: 11.19 ± 4.88 years). PanSegNet achieved DSC scores of 88 % (controls), 81 % (AP), and 80 % (CP), with HD95 values of 3.98 mm (controls), 9.85 mm (AP), and 15.67 mm (CP). Inter-observer kappa was 0.86 (controls), 0.82 (pancreatitis), and intra-observer agreement reached 0.88 and 0.81. Strong agreement was observed between automated and manual volumes (R = 0.85 in controls, 0.77 in diseased), demonstrating clinical reliability.

CONCLUSION

PanSegNet represents the first validated deep learning solution for pancreatic MRI segmentation, achieving expert-level performance across healthy and diseased states. This tool, algorithm, along with our annotated dataset, are freely available on GitHub and OSF, advancing accessible, radiation-free pediatric pancreatic imaging and fostering collaborative research in this underserved domain.

摘要

目的

我们的研究旨在评估和验证PanSegNet,这是一种用于急性胰腺炎(AP)、慢性胰腺炎(CP)患儿及健康对照者胰腺MRI分割的深度学习(DL)算法。

方法

经机构审查委员会(IRB)批准,我们回顾性收集了加齐大学2015年至2024年期间2至19岁儿童的84份MRI扫描图像(1.5T/3T西门子Aera/Verio)。该数据集包括健康儿童以及根据临床标准诊断为AP或CP的患者。儿科和普通放射科医生手动分割胰腺,然后由一位资深儿科放射科医生确认。使用骰子相似系数(DSC)和第95百分位数豪斯多夫距离(HD95)评估PanSegNet生成的分割结果。科恩kappa系数测量观察者间的一致性。

结果

从42例AP/CP患儿(平均年龄:11.73±3.9岁)和42例健康儿童(平均年龄:11.19±4.88岁)获取了胰腺MRI T2W扫描图像。PanSegNet在对照组中的DSC得分为88%,AP组为81%,CP组为80%,HD95值在对照组中为3.98mm,AP组为9.85mm,CP组为15.67mm。观察者间kappa系数在对照组中为0.86,胰腺炎组为0.82,观察者内一致性分别达到0.88和0.81。自动分割体积与手动分割体积之间观察到高度一致性(对照组中R=0.85,患病组中R=0.77),证明了临床可靠性。

结论

PanSegNet是首个经过验证的用于胰腺MRI分割的深度学习解决方案,在健康和患病状态下均达到专家级性能。该工具、算法以及我们的注释数据集可在GitHub和开放科学框架(OSF)上免费获取,推动了可及的、无辐射的儿科胰腺成像,并促进了在这个服务不足领域的合作研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验