Suppr超能文献

8421例急性缺血性脑卒中患者MRI脑白质高信号的自动分割

Automated Segmentation of MRI White Matter Hyperintensities in 8421 Patients with Acute Ischemic Stroke.

作者信息

Kim Hosung, Ryu Wi-Sun, Schellingerhout Dawid, Park Jonghyeok, Chung Jinyong, Jeong Sang-Wuk, Gwak Dong-Seok, Kim Beom Joon, Kim Joon-Tae, Hong Keun-Sik, Lee Kyung Bok, Park Tai Hwan, Park Jong-Moo, Kang Kyusik, Cho Yong-Jin, Lee Byung-Chul, Yu Kyung-Ho, Oh Mi Sun, Lee Soo Joo, Cha Jae-Kwan, Kim Dae-Hyun, Lee Jun, Park Man Seok, Bae Hee-Joon, Kim Dong-Eog

机构信息

From the USC Stevens Neuroimaging and Informatics Institute (H.K.), Keck School of Medicine of USC, University of Southern California, Los Angeles, California.

Artificial Intelligence Research Center (W.-S.R, J.P.), JLK Inc, Seoul, Republic of Korea.

出版信息

AJNR Am J Neuroradiol. 2024 Dec 9;45(12):1885-1894. doi: 10.3174/ajnr.A8418.

Abstract

BACKGROUND AND PURPOSE

To date, only a few small studies have attempted deep learning-based automatic segmentation of white matter hyperintensity (WMH) lesions in patients with cerebral infarction; this issue is complicated because stroke-related lesions can obscure WMH borders. We developed and validated deep learning algorithms to segment WMH lesions accurately in patients with cerebral infarction using multisite data sets involving 8421 patients with acute ischemic stroke.

MATERIALS AND METHODS

We included 8421 patients with stroke from 9 centers in Korea. 2D UNet and squeeze-and-excitation (SE)-UNet models were trained using 2408 FLAIR MRIs from 3 hospitals and validated using 6013 FLAIR MRIs from 6 hospitals. WMH segmentation performance was assessed by calculating the Dice similarity coefficient (DSC), the correlation coefficient, and the concordance correlation coefficient compared with a human-segmented criterion standard. In addition, we obtained an uncertainty index that represents overall ambiguity in the voxel classification for WMH segmentation in each patient based on the Kullback-Leibler divergence.

RESULTS

In the training data set, the mean age was 67.4 (SD, 13.0) years, and 60.4% were men. The mean (95% CI) DSCs for UNet in internal testing and external validation were, respectively, 0.659 (0.649-0.669) and 0.710 (0.707-0.714), which were slightly lower than the reliability between humans (DSC = 0.744; 95% CI, 0.738-0.751; = .031). Compared with the UNet, the SE-UNet demonstrated better performance, achieving a mean DSC of 0.675 (95% CI, 0.666-0.685; < .001) in the internal testing and 0.722 (95% CI, 0.719-0.726; < .001) in the external validation; moreover, it achieved high DSC values (ranging from 0.672 to 0.744) across multiple validation data sets. We observed a significant correlation between WMH volumes that were segmented automatically and manually for the UNet ( = 0.917, < .001), and it was even stronger for the SE-UNet ( = 0.933, < .001). The SE-UNet also attained a high concordance correlation coefficient (ranging from 0.841 to 0.956) in the external test data sets. In addition, the uncertainty indices in most patients (86%) in the external data sets were <0.35, with an average DSC of 0.744 in these patients.

CONCLUSIONS

We developed and validated deep learning algorithms to segment WMH in patients with acute cerebral infarction using the largest-ever MRI data sets. In addition, we showed that the uncertainty index can be used to identify cases in which automatic WMH segmentation is less accurate and requires human review.

摘要

背景与目的

迄今为止,仅有少数小型研究尝试对脑梗死患者的白质高信号(WMH)病变进行基于深度学习的自动分割;由于与中风相关的病变会模糊WMH边界,该问题变得复杂。我们开发并验证了深度学习算法,以使用涉及8421例急性缺血性中风患者的多中心数据集,准确分割脑梗死患者的WMH病变。

材料与方法

我们纳入了来自韩国9个中心的8421例中风患者。使用来自3家医院的2408例液体衰减反转恢复(FLAIR)磁共振成像(MRI)对二维U-Net和挤压激励(SE)-U-Net模型进行训练,并使用来自6家医院的6013例FLAIR MRI进行验证。与人工分割的标准对照相比,通过计算骰子相似系数(DSC)、相关系数和一致性相关系数来评估WMH分割性能。此外,我们基于库尔贝克-莱布勒散度获得了一个不确定性指数,该指数表示每位患者WMH分割的体素分类中的总体模糊性。

结果

在训练数据集中,平均年龄为67.4(标准差,13.0)岁,男性占60.4%。U-Net在内部测试和外部验证中的平均(95%置信区间)DSC分别为0.659(0.649 - 0.669)和0.710(0.707 - 0.714),略低于人类之间的可靠性(DSC = 0.744;95%置信区间,0.738 - 0.751;P = 0.031)。与U-Net相比,SE-U-Net表现更好,在内部测试中的平均DSC为0.675(95%置信区间,0.666 - 0.685;P < 0.001),在外部验证中的平均DSC为0.722(95%置信区间,0.719 - 0.726;P < 0.001);此外,它在多个验证数据集中均获得了较高的DSC值(范围为0.672至0.744)。我们观察到U-Net自动分割和手动分割的WMH体积之间存在显著相关性(r = 0.917,P < 0.001),而SE-U-Net的相关性更强(r = 0.933,P < 0.001)。SE-U-Net在外部测试数据集中也获得了较高的一致性相关系数(范围为0.841至0.956)。此外,外部数据集中大多数患者(86%)的不确定性指数<0.35,这些患者的平均DSC为0.744。

结论

我们开发并验证了深度学习算法,以使用有史以来最大的MRI数据集分割急性脑梗死患者的WMH。此外,我们表明不确定性指数可用于识别自动WMH分割准确性较低且需要人工审核的病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验