Suppr超能文献

一种使用经典和量子启发式机器学习技术进行心脏病预测的混合框架。

A hybrid framework for heart disease prediction using classical and quantum-inspired machine learning techniques.

作者信息

Kumar Ankur, Dhanka Sanjay, Sharma Abhinav, Bansal Rohit, Fahlevi Mochammad, Rabby Fazla, Aljuaid Mohammed

机构信息

School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, Mandi, 175005, Himachal Pradesh, India.

Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, India.

出版信息

Sci Rep. 2025 Jul 11;15(1):25040. doi: 10.1038/s41598-025-09957-1.

Abstract

This research proposes a novel framework for enhancing heart disease prediction using a hybrid approach that integrates classical and quantum-inspired machine learning techniques. The framework leverages a combined dataset comprising Cleveland, Hungarian, Switzerland, Long Beach, and Statlog datasets, encompassing 1190 observations. After preprocessing and removing 272 duplicate entries, the final dataset consists of 918 unique observations. Data preprocessing has been performed to handle missing values, outliers, and correlations. Feature selection has been employed to identify the most relevant attributes for heart disease prediction. Subsequently, both classical and quantum-inspired models are trained and optimized. The classical models utilized Genetic Algorithms (CGA) and Particle Swarm Optimization (CPSO) for hyperparameter tuning, while the quantum-inspired models employed Quantum Genetic Algorithms (QGAs) and Quantum Particle Swarm Optimization (QPSO). A Support Vector Machine (SVM) classifier has been used in both classical and quantum domains. Tenfold cross-validation has been performed to assess model performance using metrics such as accuracy, F1-score, precision, sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR). The performance of the classical and quantum models has been compared to existing state-of-the-art approaches. The results demonstrated the potential of the proposed hybrid framework in achieving improved heart disease prediction accuracy and robustness.

摘要

本研究提出了一种新颖的框架,用于使用一种融合经典和量子启发式机器学习技术的混合方法来增强心脏病预测。该框架利用了一个组合数据集,该数据集包括克利夫兰、匈牙利、瑞士、长滩和Statlog数据集,涵盖1190个观测值。经过预处理并去除272个重复条目后,最终数据集由918个唯一观测值组成。已经进行了数据预处理以处理缺失值、异常值和相关性。采用了特征选择来确定心脏病预测中最相关的属性。随后,对经典模型和量子启发式模型都进行了训练和优化。经典模型利用遗传算法(CGA)和粒子群优化(CPSO)进行超参数调整,而量子启发式模型采用量子遗传算法(QGA)和量子粒子群优化(QPSO)。在经典和量子领域都使用了支持向量机(SVM)分类器。使用诸如准确率、F1分数、精确率、灵敏度、特异性、阳性似然比(LR+)、阴性似然比(LR-)和诊断比值比(DOR)等指标进行了十折交叉验证以评估模型性能。将经典模型和量子模型的性能与现有的最先进方法进行了比较。结果表明,所提出的混合框架在提高心脏病预测准确性和鲁棒性方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6a/12254482/54724a06285d/41598_2025_9957_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验