Khan Areeba Naseem, Shah Yaser Ali, Khan Wasiat, Khalil Amaad, Khan Jebran
Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock, 43600, Pakistan.
Department of Software Engineering, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan.
Sci Rep. 2025 Jul 11;15(1):25122. doi: 10.1038/s41598-025-91484-0.
In recent years, advancements in deep learning and real-time data processing have significantly enhanced traffic management and accident prediction capabilities. Building on these developments, this study introduces an innovative approach ConvoseqNet to improve traffic accident prediction by integrating traditional traffic data with real-time social media insights, specifically using geographic data and Twitter sentiment analysis. ConvoseqNet combines Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks in a sequential architecture, enabling it to effectively capture complex spatiotemporal patterns in traffic data. To further enhance prediction accuracy, a meta-model called MetaFusionNetwork is proposed, which combines predictions from ConvoseqNet and a Random Forest Classifier. Results show that ConvoseqNet alone achieved the highest predictive accuracy, demonstrating its capacity to capture diverse accident-related patterns. Additionally, MetaFusionNetwork's performance highlights the advantages of combining model outputs for better prediction. This research contributes to real-time data-driven traffic management by leveraging innovative data fusion techniques, improving prediction accuracy, and providing insights into model interpretability and computational efficiency. By addressing the challenges of integrating heterogeneous data sources, this approach presents a significant advancement in traffic accident prediction and safety enhancement.
近年来,深度学习和实时数据处理技术的进步显著提升了交通管理和事故预测能力。基于这些发展成果,本研究引入了一种创新方法ConvoseqNet,通过将传统交通数据与实时社交媒体洞察相结合,特别是利用地理数据和推特情绪分析来改进交通事故预测。ConvoseqNet在序列架构中结合了卷积神经网络(CNN)和长短期记忆(LSTM)网络,使其能够有效捕捉交通数据中的复杂时空模式。为了进一步提高预测准确性,提出了一种名为MetaFusionNetwork的元模型,它结合了ConvoseqNet和随机森林分类器的预测结果。结果表明,仅ConvoseqNet就实现了最高的预测准确率,证明了其捕捉各种事故相关模式的能力。此外,MetaFusionNetwork的性能突出了结合模型输出以实现更好预测的优势。本研究通过利用创新的数据融合技术,提高预测准确性,并提供有关模型可解释性和计算效率的见解,为实时数据驱动的交通管理做出了贡献。通过应对整合异构数据源的挑战,该方法在交通事故预测和安全增强方面取得了重大进展。