Embry-Riddle Aeronautical University, Daytona Beach, FL, USA.
Accid Anal Prev. 2023 Jul;187:107043. doi: 10.1016/j.aap.2023.107043. Epub 2023 Apr 20.
The purpose of this study was to apply support vector machine (SVM) models to predict the severity of aircraft damage and the severity of personal injury during an aircraft approach and landing accident and to evaluate and rank the importance of 14 accident factors across 39 sub-categorical factors. Three new factors were introduced using the theory of inattentional blindness: The presence of visual area surface penetrations for a runway, the Federal Aviation Administration's (FAA) visual area surface penetration policy timeframe, and the type of runway approach lighting. The study comprised 1,297 aircraft approach and landing accidents at airports within the United States with at least one instrument approach procedure. Support vector machine models were developed in using the linear, polynomial, radial basis function (RBF), and sigmoid kernels for the severity of aircraft damage and additional SVM models were developed for the severity of personal injury. The SVM models using the RBF kernel produced the best machine learning models with a 96% accuracy for predicting the severity of aircraft damage (0.94 precision, 0.95 recall, and 0.95 F1-score) and a 98% accuracy for predicting the severity of personal injury (0.99 precision, 0.98 recall, and 0.99 F1-score). The top predictors across both models were the pilot's total flight hours, time of the accident, pilot's age, crosswind component, landing runway number, single-engine land certificate, and any obstacle penetration. This study demonstrates the benefit of SVM modeling using the RBF kernel for accident prediction and for datasets with categorical factors.
本研究旨在应用支持向量机(SVM)模型预测飞机进近和着陆事故中飞机损坏的严重程度和人员受伤的严重程度,并评估和排列 39 个子类别因素中的 14 个事故因素的重要性。使用疏忽盲视理论引入了三个新因素:跑道存在视觉区域表面穿透、联邦航空管理局(FAA)视觉区域表面穿透政策时间框架以及跑道进近照明类型。该研究包括美国机场的 1297 起飞机进近和着陆事故,其中至少有一种仪表进近程序。使用线性、多项式、径向基函数(RBF)和 Sigmoid 核开发了 SVM 模型,用于预测飞机损坏的严重程度,并为人员受伤的严重程度开发了额外的 SVM 模型。使用 RBF 核的 SVM 模型产生了最佳的机器学习模型,用于预测飞机损坏的严重程度(准确率为 96%,精度为 0.94,召回率为 0.95,F1 得分为 0.95),用于预测人员受伤的严重程度(准确率为 98%,精度为 0.99,召回率为 0.98,F1 得分为 0.99)。这两个模型中最重要的预测因素是飞行员的总飞行小时数、事故发生时间、飞行员年龄、侧风分量、着陆跑道号码、单发陆地证书和任何障碍物穿透。本研究证明了使用 RBF 核的 SVM 建模在事故预测和具有类别因素的数据集方面的优势。