Tian Ying, Cao Hui, Yan Dapeng, Chen Jinmei, Hua Yayan
The State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Beilin District, Xi'an, 710049, Shaanxi, People's Republic of China.
Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi'an Jiaotong University, Beilin District, Xi'an, 710049, Shaanxi, People's Republic of China.
Sci Rep. 2025 Jul 11;15(1):25097. doi: 10.1038/s41598-025-10509-w.
Amid global climate change, analyzing spatiotemporal patterns and predicting urban demand-side electrical carbon emissions is vital for regional low-carbon transitions. This study focuses on a developed coastal region in Guangdong, China. Utilizing high-frequency monitoring data from 3000 distribution network stations (May-Sept 2018), it creates an integrated 'spatiotemporal evolution-data driven prediction' framework to reveal emission dynamics and enhance forecast accuracy. Breaking through the limitations of traditional single-scale analysis, the study innovatively integrates monthly, daily and hourly time series with standard deviation ellipses and Kriging spatial interpolation technology, achieving a combination of spatial and dynamic spatiotemporal evolution analysis. The study found that the center of gravity of carbon emissions showed a significant southwest-northeastward migration trajectory, and there was a spatial differentiation feature of central urban agglomeration and peripheral area dispersion. The logarithmic mean divisia index analysis shows that finance and taxation are the primary positive driving factors, while the impact of values of industrial output and commercial consumption shows significant spatiotemporal scale differences. On this basis, the study proposed a prediction method that integrates feature engineering and bidirectional gated recurrent unit (Bi-GRU) to effectively capture carbon emission fluctuations, with an accuracy of 82.83%. The analysis framework and prediction model can provide methodological support for formulating emission reduction policies in the region and have significant application value.
在全球气候变化的背景下,分析时空模式并预测城市需求侧电力碳排放对于区域低碳转型至关重要。本研究聚焦于中国广东一个发达的沿海地区。利用3000个配电网站的高频监测数据(2018年5月至9月),创建了一个集成的“时空演变-数据驱动预测”框架,以揭示排放动态并提高预测准确性。该研究突破了传统单尺度分析的局限性,创新性地将月、日和小时时间序列与标准差椭圆和克里金空间插值技术相结合,实现了空间和动态时空演变分析的结合。研究发现,碳排放重心呈现出显著的西南向东北迁移轨迹,且存在中心城市群和周边地区分散的空间分异特征。对数平均迪氏指数分析表明,财税是主要的正向驱动因素,而工业产值和商业消费值的影响呈现出显著的时空尺度差异。在此基础上,该研究提出了一种集成特征工程和双向门控循环单元(Bi-GRU)的预测方法,能够有效捕捉碳排放波动,准确率达82.83%。该分析框架和预测模型可为该地区制定减排政策提供方法支持,具有重要的应用价值。