Ezzaher Fatima Ezahrae, Ben Achhab Nizar, Naciri Hafssa, Raissouni Naoufal, Sebbah Boutaina, Azyat Abdelilah
Mathematics and Intelligent Systems, Abdelmalek Essâadi University, 90000, Tangier, Morocco.
Remote Sensing Systems and Telecommunications, Abdelmalek Essâadi University, 93000, Tétouan, Morocco.
Environ Monit Assess. 2025 Jul 11;197(8):904. doi: 10.1007/s10661-025-14353-3.
Satellite images have been and continue to be a major area of study due to their significant contribution to the monitoring and assessment of environmental conditions using numerous indices of different categories (e.g., vegetation, water). However, processing large-scale, multitemporal datasets remains time-consuming and technically complex. To address this, an open-source QGIS Python-based plugin named Remote Sensing Toolkit (RST) was developed to automate the processing of satellite images and the computation of 100 biophysical indices from five satellite missions (i.e., AVHRR, MODIS, Landsat-8/9, Sentinel-2, ASTER). RST includes key preprocessing tools such as cloud masking, scaling, and clipping by mask layers, in addition to an AI-based outlier detection module that is integrated to enhance result reliability, all with a programming-free interface and customizable parameters. The plugin's utility was demonstrated through an application to the 2024 Spain flash flood using Sentinel-2 data from 2022 to 2024. A SARIMA model was used to detect temporal anomalies in NDVI-derived water extent time series, revealing a significant deviation coinciding with the flood event. Moreover, spatial maps of flood extent were generated to visualize and quantify the affected areas, and a comparative assessment with Copernicus Emergency Management Service Rapid Mapping (CEMS RM) products was conducted to evaluate the accuracy of detected flood extents. This analysis highlighted the complementary value of NDVI-derived flood maps and demonstrated the plugin's effectiveness in automating satellite data workflows for environmental monitoring and rapid disaster assessment.
由于卫星图像在利用众多不同类别的指标(如植被、水)监测和评估环境状况方面做出了重大贡献,因此一直是且仍然是一个主要的研究领域。然而,处理大规模、多时间序列数据集仍然既耗时又技术复杂。为了解决这个问题,开发了一个基于QGIS Python的名为遥感工具包(RST)的开源插件,用于自动处理卫星图像并计算来自五个卫星任务(即高级甚高分辨率辐射计(AVHRR)、中分辨率成像光谱仪(MODIS)、陆地卫星8/9、哨兵2号、先进星载热发射和反射辐射仪(ASTER))的100个生物物理指标。RST包括关键的预处理工具,如云掩膜、缩放和通过掩膜层裁剪,此外还集成了一个基于人工智能的异常值检测模块以提高结果可靠性,所有这些都具有无需编程的界面和可定制参数。通过将该插件应用于2024年西班牙暴雨洪水事件,利用2022年至2024年的哨兵2号数据,展示了其效用。使用自回归求和移动平均(SARIMA)模型检测归一化植被指数(NDVI)衍生的水域范围时间序列中的时间异常,发现与洪水事件一致的显著偏差。此外,生成了洪水范围的空间地图以可视化和量化受影响区域,并与哥白尼应急管理服务快速制图(CEMS RM)产品进行了比较评估,以评估检测到的洪水范围的准确性。该分析突出了基于NDVI的洪水地图的互补价值,并证明了该插件在自动化用于环境监测和快速灾害评估的卫星数据工作流程方面的有效性。