Martinez Daniella V, Schambach Jenna Y, Davydovich Oleg, Mascarenas Monica R, Butler Sadi C, Kolker Stephanie, Salinas Jay E, Smallwood Chuck R, Choudhary Hemant, Quiroz-Arita Carlos, Kent Michael S
Environmental Systems Biology, Sandia National Laboratories, Albuquerque, NM, 87185, USA.
Bioresource & Environmental Security, Sandia National Laboratories, Livermore, CA, 94551, USA.
Biotechnol Biofuels Bioprod. 2025 Jul 11;18(1):73. doi: 10.1186/s13068-025-02672-z.
Advancing biomethane production from anaerobic digestion (AD) is essential for building a more reliable and resilient bioenergy system. However, incomplete conversion of lignocellulose-rich agricultural waste remains a key limitation, often leaving energy-dense residues in the digestate by-product. In this study, we introduce a novel application of chelator-mediated Fenton (CMF) post-treatment to recover untapped biomethane potential from these recalcitrant residues, representing a significant departure from conventional pre-treatment strategies. By systematically varying pH, iron-chelator concentration, and hydrogen peroxide dosage, we identified reaction conditions (pH 6-8, 5 mM Fe-dihydroxybenzene, 3-4 wt.% HO) that enhanced lignocellulose deconstruction and increased dissolved organic carbon (DOC) availability for methanogenesis. CMF post-treatment led to up to a tenfold increase in biomethane potential compared to untreated controls. Microbial community analysis revealed enrichment of cellulolytic species, suggesting enhanced hydrolytic activity as a driver of improved conversion. Application of the CMF post-treatment method to isolated poplar lignin further demonstrated its versatility for diverse lignocellulosic substrates. These findings position CMF post-treatment as a promising strategy to enhance AD efficiency and valorize digestate.
提高厌氧消化(AD)产生生物甲烷的能力对于构建更可靠、更具韧性的生物能源系统至关重要。然而,富含木质纤维素的农业废弃物不完全转化仍然是一个关键限制因素,通常会在消化副产物中留下能量密集的残留物。在本研究中,我们引入了螯合剂介导的芬顿(CMF)后处理的新应用,以从这些难降解的残留物中回收未开发的生物甲烷潜力,这与传统的预处理策略有很大不同。通过系统地改变pH值、铁螯合剂浓度和过氧化氢用量,我们确定了能够增强木质纤维素解构并提高甲烷生成中溶解有机碳(DOC)可用性的反应条件(pH 6 - 8、5 mM二羟基苯铁、3 - 4 wt.% H₂O₂)。与未处理的对照相比,CMF后处理使生物甲烷潜力提高了多达十倍。微生物群落分析显示纤维素分解菌物种富集,表明水解活性增强是转化率提高的驱动因素。将CMF后处理方法应用于分离的杨树木质素进一步证明了其对多种木质纤维素底物的通用性。这些发现使CMF后处理成为提高AD效率和使消化产物增值的一种有前景的策略。