Suppr超能文献

整合与维生素D相关的临床和转录组学特征,使用CatBoost算法提高宫颈癌复发患者的无病生存率。

Integrating Clinical and Transcriptomic Profiles Associated with Vitamin D to Enhance Disease-Free Survival in Cervical Cancer Recurrence Using the CatBoost Algorithm.

作者信息

Senthilkumar Geeitha, Pitchaimuthu Renuka, Dhanasekaran Seshathiri, Panneerselvam Prabu Sankar

机构信息

Department of Information Technology, M. Kumarasamy College of Engineering, Thalavapalayam, Karur 639113, Tamil Nadu, India.

Department of Computer Science, UiT The Arctic University of Norway, 9037 Tromsø, Norway.

出版信息

Diagnostics (Basel). 2025 Jun 21;15(13):1579. doi: 10.3390/diagnostics15131579.

Abstract

: Cervical cancer is a leading cancer-related cause of death among women, with recurrence being a serious clinical issue. Recent evidence demonstrates that long non-coding RNAs (lncRNAs) affect cancer recurrence. This research investigates vitamin D's regulatory actions in the recurrence of cervical cancer, centering on the involvement of lncRNA. Clinical data on 738 patients shows that greater serum vitamin D levels are linked to reduced recurrence rates and enhanced disease-free survival (DFS). : A transcriptomic analysis of CaSki cervical cancer cells using data from the GEO dataset GSE267715 identified that vitamin D controls genes that prevent cervical cancer recurrence. Machine learning predictors CatBoost, LightGBM, Extra Trees, and Logistic Regression and feature selection methods such as ANOVA F-test, mutual information, Chi-squared test, and Recursive Feature Elimination (RFE) are used to identify predictors of recurrence, evaluating model performance using accuracy, precision, recall, ROC AUC, confusion matrices, and ROC curves. : CatBoost performs the best overall, producing an accuracy of 95.27%. CatBoost provided an ROC AUC of 0.9930, a precision of 0.9296, and a recall of 0.9706, and this implies a significant trade-off between the ability to detect metastatic cases correctly. : These data identify the therapeutic potential of vitamin D as a regulatory compound and lncRNA as a potential therapeutic target in the recurrence of cervical cancer.

摘要

宫颈癌是女性癌症相关死亡的主要原因,复发是一个严重的临床问题。最近的证据表明,长链非编码RNA(lncRNA)会影响癌症复发。本研究以lncRNA的参与为核心,调查维生素D在宫颈癌复发中的调节作用。738例患者的临床数据显示,血清维生素D水平越高,复发率越低,无病生存期(DFS)越长。:使用GEO数据集GSE267715的数据对CaSki宫颈癌细胞进行转录组分析,发现维生素D可控制预防宫颈癌复发的基因。使用机器学习预测器CatBoost、LightGBM、Extra Trees和逻辑回归以及方差分析F检验、互信息、卡方检验和递归特征消除(RFE)等特征选择方法来识别复发预测因子,使用准确率、精确率、召回率、ROC AUC、混淆矩阵和ROC曲线评估模型性能。:CatBoost总体表现最佳,准确率为95.27%。CatBoost的ROC AUC为0.9930,精确率为0.9296,召回率为0.9706,这意味着在正确检测转移病例的能力之间存在显著权衡。:这些数据确定了维生素D作为调节化合物的治疗潜力以及lncRNA作为宫颈癌复发潜在治疗靶点的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddfd/12248449/826193b7e754/diagnostics-15-01579-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验