Cheng Li-Chin, Liu Chung-Feng, Yeh Chin-Choon
Division of Colorectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710402, Taiwan.
Division of Traumatology, Department of Surgery, Chi Mei Medical Center, Tainan 710402, Taiwan.
Diagnostics (Basel). 2025 Jun 22;15(13):1582. doi: 10.3390/diagnostics15131582.
: Major trauma ranks among the leading causes of mortality and handicap in both developing and developed countries, consuming substantial healthcare resources. Its unpredictable nature and diverse clinical presentations often lead to rapid and challenging-to-predict changes in patient conditions. An increasing number of models have been developed to address this challenge. Given our access to extensive and relatively comprehensive data, we seek assistance in making a meaningful contribution to this topic. This study aims to leverage artificial intelligence (AI)/machine learning (ML) to forecast potential adverse effects in major trauma patients. : This retrospective analysis considered major trauma patient admitted to Chi Mei Medical Center from 1 January 2010 to 31 December 2019. : A total of 5521 major trauma patients were analyzed. Among five AI models tested, XGBoost showed the best performance (AUC 0.748), outperforming traditional clinical scores such as ISS and GCS. The model was deployed as a web-based application integrated into the hospital information system. Preliminary clinical use demonstrated improved efficiency, interpretability through SHAP analysis, and positive user feedback from healthcare professionals. : This study presents a predictive model for estimating recovery probabilities in severe burn patients, effectively integrated into the hospital information system (HIS) without complex computations. Clinical use has shown improved efficiency and quality. Future efforts will expand predictions to include complications and treatment outcomes, aiming for broader applications as technology advances.
在发展中国家和发达国家,严重创伤都是导致死亡和残疾的主要原因之一,消耗了大量的医疗资源。其不可预测的性质和多样的临床表现常常导致患者病情迅速且难以预测地变化。为应对这一挑战,已开发出越来越多的模型。鉴于我们能够获取广泛且相对全面的数据,我们寻求帮助以对这一主题做出有意义的贡献。本研究旨在利用人工智能(AI)/机器学习(ML)来预测严重创伤患者的潜在不良影响。 本回顾性分析纳入了2010年1月1日至2019年12月31日在奇美医学中心收治的严重创伤患者。 共分析了5521例严重创伤患者。在测试的五个AI模型中,XGBoost表现最佳(曲线下面积为0.748),优于创伤严重度评分(ISS)和格拉斯哥昏迷评分(GCS)等传统临床评分。该模型被部署为一个基于网络的应用程序,并集成到医院信息系统中。初步临床应用显示效率有所提高,通过SHAP分析具有可解释性,且得到了医疗专业人员的积极用户反馈。 本研究提出了一种用于估计重度烧伤患者康复概率的预测模型,该模型有效集成到医院信息系统(HIS)中,无需复杂计算。临床应用已显示出效率和质量的提高。未来的工作将扩大预测范围,包括并发症和治疗结果,随着技术进步,目标是实现更广泛的应用。
Clin Orthop Relat Res. 2024-9-1
Autism Adulthood. 2024-12-2
JBI Database System Rev Implement Rep. 2016-4
Cochrane Database Syst Rev. 2022-5-20
J Psychiatr Ment Health Nurs. 2024-8
Am J Emerg Med. 2025-1
J Korean Soc Radiol. 2024-7
J Psychopathol Clin Sci. 2024-4