文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

“她/他能走出医院吗?”:在重大创伤中应用人工智能模型进行康复预测和医患沟通

"Could She/He Walk Out of the Hospital?": Implementing AI Models for Recovery Prediction and Doctor-Patient Communication in Major Trauma.

作者信息

Cheng Li-Chin, Liu Chung-Feng, Yeh Chin-Choon

机构信息

Division of Colorectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710402, Taiwan.

Division of Traumatology, Department of Surgery, Chi Mei Medical Center, Tainan 710402, Taiwan.

出版信息

Diagnostics (Basel). 2025 Jun 22;15(13):1582. doi: 10.3390/diagnostics15131582.


DOI:10.3390/diagnostics15131582
PMID:40647581
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12249231/
Abstract

: Major trauma ranks among the leading causes of mortality and handicap in both developing and developed countries, consuming substantial healthcare resources. Its unpredictable nature and diverse clinical presentations often lead to rapid and challenging-to-predict changes in patient conditions. An increasing number of models have been developed to address this challenge. Given our access to extensive and relatively comprehensive data, we seek assistance in making a meaningful contribution to this topic. This study aims to leverage artificial intelligence (AI)/machine learning (ML) to forecast potential adverse effects in major trauma patients. : This retrospective analysis considered major trauma patient admitted to Chi Mei Medical Center from 1 January 2010 to 31 December 2019. : A total of 5521 major trauma patients were analyzed. Among five AI models tested, XGBoost showed the best performance (AUC 0.748), outperforming traditional clinical scores such as ISS and GCS. The model was deployed as a web-based application integrated into the hospital information system. Preliminary clinical use demonstrated improved efficiency, interpretability through SHAP analysis, and positive user feedback from healthcare professionals. : This study presents a predictive model for estimating recovery probabilities in severe burn patients, effectively integrated into the hospital information system (HIS) without complex computations. Clinical use has shown improved efficiency and quality. Future efforts will expand predictions to include complications and treatment outcomes, aiming for broader applications as technology advances.

摘要

在发展中国家和发达国家,严重创伤都是导致死亡和残疾的主要原因之一,消耗了大量的医疗资源。其不可预测的性质和多样的临床表现常常导致患者病情迅速且难以预测地变化。为应对这一挑战,已开发出越来越多的模型。鉴于我们能够获取广泛且相对全面的数据,我们寻求帮助以对这一主题做出有意义的贡献。本研究旨在利用人工智能(AI)/机器学习(ML)来预测严重创伤患者的潜在不良影响。 本回顾性分析纳入了2010年1月1日至2019年12月31日在奇美医学中心收治的严重创伤患者。 共分析了5521例严重创伤患者。在测试的五个AI模型中,XGBoost表现最佳(曲线下面积为0.748),优于创伤严重度评分(ISS)和格拉斯哥昏迷评分(GCS)等传统临床评分。该模型被部署为一个基于网络的应用程序,并集成到医院信息系统中。初步临床应用显示效率有所提高,通过SHAP分析具有可解释性,且得到了医疗专业人员的积极用户反馈。 本研究提出了一种用于估计重度烧伤患者康复概率的预测模型,该模型有效集成到医院信息系统(HIS)中,无需复杂计算。临床应用已显示出效率和质量的提高。未来的工作将扩大预测范围,包括并发症和治疗结果,随着技术进步,目标是实现更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a121/12249231/1d990d5052c0/diagnostics-15-01582-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a121/12249231/cce80d30dc6f/diagnostics-15-01582-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a121/12249231/5d6555eba13a/diagnostics-15-01582-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a121/12249231/1d990d5052c0/diagnostics-15-01582-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a121/12249231/cce80d30dc6f/diagnostics-15-01582-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a121/12249231/5d6555eba13a/diagnostics-15-01582-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a121/12249231/1d990d5052c0/diagnostics-15-01582-g003a.jpg

相似文献

[1]
"Could She/He Walk Out of the Hospital?": Implementing AI Models for Recovery Prediction and Doctor-Patient Communication in Major Trauma.

Diagnostics (Basel). 2025-6-22

[2]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[3]
Development of a machine learning model and a web application for predicting neurological outcome at hospital discharge in spinal cord injury patients.

Spine J. 2025-1-31

[4]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[5]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[6]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[7]
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.

Autism Adulthood. 2024-12-2

[8]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.

J Psychiatr Ment Health Nurs. 2024-8

本文引用的文献

[1]
Prediction models for the complication incidence and survival rate of dental implants-a systematic review and critical appraisal.

Int J Implant Dent. 2025-1-23

[2]
The potential benefit of artificial intelligence regarding clinical decision-making in the treatment of wrist trauma patients.

J Orthop Surg Res. 2024-9-19

[3]
Artificial intelligence in paediatric head trauma: enhancing diagnostic accuracy for skull fractures and brain haemorrhages.

Neurosurg Rev. 2024-9-19

[4]
The use of artificial intelligence in blunt chest trauma.

Am J Emerg Med. 2025-1

[5]
Diagnostic evaluation of blunt chest trauma by imaging-based application of artificial intelligence.

Am J Emerg Med. 2024-11

[6]
[Diagnosis of Rib Fracture Using Artificial Intelligence on Chest CT Images of Patients with Chest Trauma].

J Korean Soc Radiol. 2024-7

[7]
Pediatric cardiac surgery: machine learning models for postoperative complication prediction.

J Anesth. 2024-12

[8]
Acceptability of data linkage to identify women at risk of postnatal complication for the development of digital risk prediction tools and interventions to better optimise postnatal care, a qualitative descriptive study design.

BMC Med. 2024-7-2

[9]
Prediction of sepsis among patients with major trauma using artificial intelligence: a multicenter validated cohort study.

Int J Surg. 2025-1-1

[10]
Higher risk-less data: A systematic review and meta-analysis on the role of sex and gender in trauma research.

J Psychopathol Clin Sci. 2024-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索